scholarly journals Generating Functions of Bipartite Maps on Orientable Surfaces

10.37236/5511 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Guillaume Chapuy ◽  
Wenjie Fang

We compute, for each genus $g\geq 0$, the generating function $L_g\equiv L_g(t;p_1,p_2,\dots)$ of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such that for each $g$, $L_g$ is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function $F_g$ of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet /Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result  complements recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d'enfants. Our proofs borrow some ideas from Eynard's "topological recursion" that he applied in particular to even-faced maps (unconventionally called "bipartite maps" in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Wenjie Fang

International audience We compute, for each genus $g$ &ge; 0, the generating function $L$<sub>$g$</sub> &equiv; $L$<sub>$g$</sub>($t$;$p$<sub>1</sub>,$p$<sub>2</sub>,...) of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such that for each $g$, $L$<sub>$g$</sub> is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function $L$<sub>$g$</sub> of <i>rooted</i> bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result strengthens recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of <i>dessins d’enfants</i>. Our proofs borrow some ideas from Eynard’s “topological recursion” that he applied in particular to even-faced maps (unconventionally called “bipartite maps” in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series. Nous calculons, pour chaque genre $g$ &ge; 0, la série génératrice $L$<sub>$g$</sub> &equiv; $L$<sub>$g$</sub>($t$;$p$<sub>1</sub>,$p$<sub>2</sub>,...) des cartes bipartites (étiquetées) sur la surface orientable de genre $g$, avec contrôle des degrés des faces. On exhibe un changement de variable explicite tel que pour tout $g$, $L$<sub>$g$</sub> est une fonction rationnelle des nouvelles variables, calculable par une récurrence explicite sur le genre. La même chose est vraie de la série génératrice $L$<sub>$g$</sub> des cartes biparties <i>enracinées</i>. La forme du résultat est similaire aux formules de Goulden/Jackson/Vakil et Goulden/Guay-Paquet/Novak pour les séries génératrices de nombres de Hurwitz classiques et monotones, respectivement, ce qui suggère des liens plus forts entre ces modèles. Notre résultat renforce des résultats récents de Kazarian et Zograf, qui étudient le cas où le nombre de faces est borné, dans le formalisme équivalent des <i>dessins d’enfants</i>. Nos démonstrations utilisent deux idées de la “récurrence topologique” d’Eynard, qu’il a appliquée notamment aux cartes paires (appelées de manière non-standard “cartes biparties” dans son travail). Cela dit, ce papier ne requiert pas de connaissance préliminaire sur ce sujet, et nos démonstrations (sans analyse complexe) sont écrites dans le language des séries formelles.



2020 ◽  
Vol 21 (10) ◽  
pp. 3285-3339
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

Abstract We consider the Laguerre partition function and derive explicit generating functions for connected correlators with arbitrary integer powers of traces in terms of products of Hahn polynomials. It was recently proven in Cunden et al. (Ann. Inst. Henri Poincaré D, to appear) that correlators have a topological expansion in terms of weakly or strictly monotone Hurwitz numbers that can be explicitly computed from our formulae. As a second result, we identify the Laguerre partition function with only positive couplings and a special value of the parameter $$\alpha =-1/2$$ α = - 1 / 2 with the modified GUE partition function, which has recently been introduced in Dubrovin et al. (Hodge-GUE correspondence and the discrete KdV equation. arXiv:1612.02333) as a generating function for Hodge integrals. This identification provides a direct and new link between monotone Hurwitz numbers and Hodge integrals.



10.37236/3443 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
J. Bouttier ◽  
E. Guitter

We derive a formula for the generating function of $d$-irreducible bipartite planar maps with several boundaries, i.e. having several marked faces of controlled degrees. It extends a formula due to Collet and Fusy for the case of arbitrary (non necessarily irreducible) bipartite planar maps, which is recovered by taking $d=0$. As an application, we obtain an expression for the number of $d$-irreducible bipartite planar maps with a prescribed number of faces of each allowed degree. Very explicit expressions are given in the case of maps without multiple edges ($d=2$), $4$-irreducible maps and maps of girth at least $6$ ($d=4$). Our derivation is based on a tree interpretation of the various encountered generating functions.



Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.



2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

AbstractWe express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulæ for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.



1996 ◽  
Vol 28 (01) ◽  
pp. 114-165 ◽  
Author(s):  
H. R. Gail ◽  
S. L. Hantler ◽  
B. A. Taylor

When analyzing the equilibrium behavior of M/G/1 type Markov chains by transform methods, restrictive hypotheses are often made to avoid technical problems that arise in applying results from complex analysis and linear algebra. It is shown that such restrictive assumptions are unnecessary, and an analysis of these chains using generating functions is given under only the natural hypotheses that first moments (or second moments in the null recurrent case) exist. The key to the analysis is the identification of an important subspace of the space of bounded solutions of the system of homogeneous vector-valued Wiener–Hopf equations associated with the chain. In particular, the linear equations in the boundary probabilities obtained from the transform method are shown to correspond to a spectral basis of the shift operator on this subspace. Necessary and sufficient conditions under which the chain is ergodic, null recurrent or transient are derived in terms of properties of the matrix-valued generating functions determined by transitions of the Markov chain. In the transient case, the Martin exit boundary is identified and shown to be associated with certain eigenvalues and vectors of one of these generating functions. An equilibrium analysis of the class of G/M/1 type Markov chains by similar methods is also presented.



2021 ◽  
Vol 81 (12) ◽  
Author(s):  
A. Andreev ◽  
A. Popolitov ◽  
A. Sleptsov ◽  
A. Zhabin

AbstractWe investigate the structural constants of the KP hierarchy, which appear as universal coefficients in the paper of Natanzon–Zabrodin arXiv:1509.04472. It turns out that these constants have a combinatorial description in terms of transport coefficients in the theory of flow networks. Considering its properties we want to point out three novel directions of KP combinatorial structure research: connection with topological recursion, eigenvalue model for the structural constants and its deformations, possible deformations of KP hierarchy in terms of the structural constants. Firstly, in this paper we study the internal structure of these coefficients which involves: (1) construction of generating functions that have interesting properties by themselves; (2) restrictions on topological recursion initial data; (3) construction of integral representation or matrix model for these coefficients with non-trivial Ward identities. This shows that these coefficients appear in various problems of mathematical physics, which increases their value and significance. Secondly, we discuss their role in integrability of KP hierarchy considering possible deformation of these coefficients without changing the equations on $$\tau $$ τ -function. We consider several plausible deformations. While most failed even very basic checks, one deformation (involving Macdonald polynomials) passes all the simple checks and requires more thorough study.



2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Shreejit Bandyopadhyay ◽  
Ae Yee

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.



2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.



Sign in / Sign up

Export Citation Format

Share Document