scholarly journals A Note on Irreducible Maps with Several Boundaries

10.37236/3443 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
J. Bouttier ◽  
E. Guitter

We derive a formula for the generating function of $d$-irreducible bipartite planar maps with several boundaries, i.e. having several marked faces of controlled degrees. It extends a formula due to Collet and Fusy for the case of arbitrary (non necessarily irreducible) bipartite planar maps, which is recovered by taking $d=0$. As an application, we obtain an expression for the number of $d$-irreducible bipartite planar maps with a prescribed number of faces of each allowed degree. Very explicit expressions are given in the case of maps without multiple edges ($d=2$), $4$-irreducible maps and maps of girth at least $6$ ($d=4$). Our derivation is based on a tree interpretation of the various encountered generating functions.


2014 ◽  
Vol 23 (6) ◽  
pp. 914-972 ◽  
Author(s):  
J. BOUTTIER ◽  
E. GUITTER

We consider the problem of enumeratingd-irreducible maps,i.e., planar maps all of whose cycles have length at leastd, and such that any cycle of lengthdis the boundary of a face of degreed. We develop two approaches in parallel: the natural approach via substitution, where these maps are obtained from general maps by a replacement of alld-cycles by elementary faces, and a bijective approach via slice decomposition, which consists in cutting the maps along shortest paths. Both lead to explicit expressions for the generating functions ofd-irreducible maps with controlled face degrees, summarized in some elegant ‘pointing formula’. We provide an equivalent description ofd-irreducible slices in terms of so-calledd-oriented trees. We finally show that irreducible maps give rise to a hierarchy of discrete integrable equations which include equations encountered previously in the context of naturally embedded trees.



10.37236/5511 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Guillaume Chapuy ◽  
Wenjie Fang

We compute, for each genus $g\geq 0$, the generating function $L_g\equiv L_g(t;p_1,p_2,\dots)$ of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such that for each $g$, $L_g$ is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function $F_g$ of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet /Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result  complements recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d'enfants. Our proofs borrow some ideas from Eynard's "topological recursion" that he applied in particular to even-faced maps (unconventionally called "bipartite maps" in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.



2020 ◽  
Vol 77 (1) ◽  
pp. 73-98
Author(s):  
Seán Mark Stewart

AbstractIn this paper a number of new explicit expressions for quadratic Euler-type sums containing double-index harmonic numbers H2n are given. These are obtained using ordinary generating functions containing the square of the harmonic numbers Hn. As a by-product of the generating function approach used new proofs for the remarkable quadratic series of Au-Yeung \sum\limits_{n = 1}^\infty {{{\left( {{{{H_n}} \over n}} \right)}^2} = {{17{\pi ^4}} \over {360}}} together with its closely related alternating cousin are given. New proofs for other closely related quadratic Euler-type sums that are known in the literature are also obtained.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Wenjie Fang

International audience We compute, for each genus $g$ &ge; 0, the generating function $L$<sub>$g$</sub> &equiv; $L$<sub>$g$</sub>($t$;$p$<sub>1</sub>,$p$<sub>2</sub>,...) of (labelled) bipartite maps on the orientable surface of genus $g$, with control on all face degrees. We exhibit an explicit change of variables such that for each $g$, $L$<sub>$g$</sub> is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function $L$<sub>$g$</sub> of <i>rooted</i> bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result strengthens recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of <i>dessins d’enfants</i>. Our proofs borrow some ideas from Eynard’s “topological recursion” that he applied in particular to even-faced maps (unconventionally called “bipartite maps” in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series. Nous calculons, pour chaque genre $g$ &ge; 0, la série génératrice $L$<sub>$g$</sub> &equiv; $L$<sub>$g$</sub>($t$;$p$<sub>1</sub>,$p$<sub>2</sub>,...) des cartes bipartites (étiquetées) sur la surface orientable de genre $g$, avec contrôle des degrés des faces. On exhibe un changement de variable explicite tel que pour tout $g$, $L$<sub>$g$</sub> est une fonction rationnelle des nouvelles variables, calculable par une récurrence explicite sur le genre. La même chose est vraie de la série génératrice $L$<sub>$g$</sub> des cartes biparties <i>enracinées</i>. La forme du résultat est similaire aux formules de Goulden/Jackson/Vakil et Goulden/Guay-Paquet/Novak pour les séries génératrices de nombres de Hurwitz classiques et monotones, respectivement, ce qui suggère des liens plus forts entre ces modèles. Notre résultat renforce des résultats récents de Kazarian et Zograf, qui étudient le cas où le nombre de faces est borné, dans le formalisme équivalent des <i>dessins d’enfants</i>. Nos démonstrations utilisent deux idées de la “récurrence topologique” d’Eynard, qu’il a appliquée notamment aux cartes paires (appelées de manière non-standard “cartes biparties” dans son travail). Cela dit, ce papier ne requiert pas de connaissance préliminaire sur ce sujet, et nos démonstrations (sans analyse complexe) sont écrites dans le language des séries formelles.



10.37236/1691 ◽  
2003 ◽  
Vol 9 (2) ◽  
Author(s):  
Mireille Bousquet-Mélou

Many families of pattern-avoiding permutations can be described by a generating tree in which each node carries one integer label, computed recursively via a rewriting rule. A typical example is that of $123$-avoiding permutations. The rewriting rule automatically gives a functional equation satisfied by the bivariate generating function that counts the permutations by their length and the label of the corresponding node of the tree. These equations are now well understood, and their solutions are always algebraic series. Several other families of permutations can be described by a generating tree in which each node carries two integer labels. To these trees correspond other functional equations, defining 3-variate generating functions. We propose an approach to solving such equations. We thus recover and refine, in a unified way, some results on Baxter permutations, $1234$-avoiding permutations, $2143$-avoiding (or: vexillary) involutions and $54321$-avoiding involutions. All the generating functions we obtain are D-finite, and, more precisely, are diagonals of algebraic series. Vexillary involutions are exceptionally simple: they are counted by Motzkin numbers, and thus have an algebraic generating function. In passing, we exhibit an interesting link between Baxter permutations and the Tutte polynomial of planar maps.



Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.



Author(s):  
A. B. Bhatia ◽  
E. Wolf

ABSTRACTThe paper is concerned with the construction of polynomials in two variables, which form a complete orthogonal set for the interior of the unit circle and which are ‘invariant in form’ with respect to rotations of axes about the origin of coordinates. It is found that though there exist an infinity of such sets there is only one set which in addition has certain simple properties strictly analogous to that of Legendre polynomials. This set is found to be identical with the set of the circle polynomials of Zernike which play an important part in the theory of phase contrast and in the Nijboer-Zernike diffraction theory of optical aberrations.The results make it possible to derive explicit expressions for the Zernike polynomials in a simple, systematic manner. The method employed may also be used to derive other orthogonal sets. One new set is investigated, and the generating functions for this set and for the Zernike polynomials are also given.



2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Shreejit Bandyopadhyay ◽  
Ae Yee

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.



2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.



2011 ◽  
Vol 21 (07) ◽  
pp. 1217-1235 ◽  
Author(s):  
VÍCTOR BLANCO ◽  
PEDRO A. GARCÍA-SÁNCHEZ ◽  
JUSTO PUERTO

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the methodology analyzing the cases of multiplicity 3 and 4 where some formulas for the number of numerical semigroups for any genus and Frobenius number are obtained.



Sign in / Sign up

Export Citation Format

Share Document