scholarly journals Extremal Graph for Intersecting Odd Cycles

10.37236/5851 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Xinmin Hou ◽  
Yu Qiu ◽  
Boyuan Liu

An extremal graph for a graph $H$ on $n$ vertices is a graph on $n$ vertices with maximum number of edges that does not contain $H$ as a subgraph. Let $T_{n,r}$ be the Turán graph, which is the complete $r$-partite graph on $n$ vertices with part sizes that differ by at most one. The well-known Turán Theorem states that $T_{n,r}$ is the only extremal graph for complete graph $K_{r+1}$. Erdős et al. (1995) determined the extremal graphs for intersecting triangles and Chen et al. (2003) determined the maximum number of edges of the extremal graphs for intersecting cliques. In this paper, we determine the extremal graphs for intersecting odd cycles.


2014 ◽  
Vol 24 (4) ◽  
pp. 641-645 ◽  
Author(s):  
ZOLTAN FÜREDI ◽  
DAVID S. GUNDERSON

We describe theC2k+1-free graphs onnvertices with maximum number of edges. The extremal graphs are unique forn∉ {3k− 1, 3k, 4k− 2, 4k− 1}. The value ofex(n,C2k+1) can be read out from the works of Bondy [3], Woodall [14], and Bollobás [1], but here we give a new streamlined proof. The complete determination of the extremal graphs is also new.We obtain that the bound forn0(C2k+1) is 4kin the classical theorem of Simonovits, from which the unique extremal graph is the bipartite Turán graph.



10.37236/4194 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Jan Hladký ◽  
Diana Piguet

We determine the maximum number of edges of an $n$-vertex graph $G$ with the property that none of its $r$-cliques intersects a fixed set $M\subset V(G)$.  For $(r-1)|M|\ge n$, the $(r-1)$-partite Turán graph turns out to be the unique extremal graph. For $(r-1)|M|<n$, there is a whole family of extremal graphs, which we describe explicitly. In addition we provide corresponding stability results.



10.37236/122 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Vladimir Nikiforov

Let $\mu\left( G\right) $ be the largest eigenvalue of a graph $G$ and $T_{r}\left( n\right) $ be the $r$-partite Turán graph of order $n.$We prove that if $G$ is a graph of order $n$ with $\mu\left( G\right)>\mu\left( T_{r}\left( n\right) \right)$, then $G$ contains various large supergraphs of the complete graph of order $r+1,$ e.g., the complete $r$-partite graph with all parts of size $\log n$ with an edge added to the first part.We also give corresponding stability results.



Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.



10.37236/3142 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Hong Liu ◽  
Bernard Lidicky ◽  
Cory Palmer

The Turán number of a graph $H$, $\mathrm{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. We determine the Turán number and find the unique extremal graph for forests consisting of paths when $n$ is sufficiently large. This generalizes a result of Bushaw and Kettle [Combinatorics, Probability and Computing 20:837--853, 2011]. We also determine the Turán number and extremal graphs for forests consisting of stars of arbitrary order.



2019 ◽  
Vol 19 (10) ◽  
pp. 2050184
Author(s):  
Bidwan Chakraborty ◽  
Mousumi Mandal

Let [Formula: see text] be a graph and [Formula: see text] be its edge ideal. When [Formula: see text] is the clique sum of two different length odd cycles joined at single vertex then we give an explicit description of the symbolic powers of [Formula: see text] and compute the Waldschmidt constant. When [Formula: see text] is complete graph then we describe the generators of the symbolic powers of [Formula: see text] and compute the Waldschmidt constant and the resurgence of [Formula: see text]. Moreover for complete graph we prove that the Castelnuovo–Mumford regularity of the symbolic powers and ordinary powers of the edge ideal coincide.





2004 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Dragos Cvetkovic ◽  
Pierre Hansen ◽  
Vera Kovacevic-Vujcic

The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions.



2015 ◽  
Vol 29 ◽  
pp. 237-253 ◽  
Author(s):  
Kinkar Das ◽  
SHAOWEI SUN

Let $G=(V,\,E)$ be a simple graph of order $n$ and the normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq\rho_{n-1}\geq \rho_n=0$. The normalized Laplacian energy (or Randi\'c energy) of $G$ without any isolated vertex is defined as $$RE(G)=\sum_{i=1}^{n}|\rho_i-1|.$$ In this paper, a lower bound on $\rho_1$ of connected graph $G$ ($G$ is not isomorphic to complete graph) is given and the extremal graphs (that is, the second minimal normalized Laplacian spectral radius of connected graphs) are characterized. Moreover, Nordhaus-Gaddum type results for $\rho_1$ are obtained. Recently, Gutman et al.~gave a conjecture on Randi\'c energy of connected graph [I. Gutman, B. Furtula, \c{S}. B. Bozkurt, On Randi\'c energy, Linear Algebra Appl. 442 (2014) 50--57]. Here this conjecture for starlike trees is proven.



Sign in / Sign up

Export Citation Format

Share Document