scholarly journals Graphical Mahonian Statistics on Words

10.37236/6263 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Amy Grady ◽  
Svetlana Poznanović

Foata and Zeilberger defined the graphical major index, $\mathrm{maj}_U$, and the graphical inversion index, $\mathrm{inv}_U$, for words over the alphabet $\{1, 2, \dots, n\}$. These statistics are a generalization of the classical permutation statistics $\mathrm{maj}$ and $\mathrm{inv}$ indexed by directed graphs $U$. They showed that $\mathrm{maj}_U$ and $\mathrm{inv}_U$ are equidistributed over all rearrangement classes if and only if $U$ is bipartitional. In this paper we strengthen their result by showing that if $\mathrm{maj}_U$ and $\mathrm{inv}_U$ are equidistributed on a single rearrangement class then $U$ is essentially bipartitional. Moreover, we define a graphical sorting index, $\mathrm{sor}_U$, which generalizes the sorting index of a permutation. We then characterize the graphs $U$ for which $\mathrm{sor}_U$ is equidistributed with $\mathrm{inv}_U$ and $\mathrm{maj}_U$ on a single rearrangement class. 


10.37236/2001 ◽  
2011 ◽  
Vol 18 (2) ◽  
Author(s):  
Petter Brändén ◽  
Anders Claesson

Any permutation statistic $f:{\mathfrak{S}}\to{\mathbb C}$ may be represented uniquely as a, possibly infinite, linear combination of (classical) permutation patterns: $f= \Sigma_\tau\lambda_f(\tau)\tau$. To provide explicit expansions for certain statistics, we introduce a new type of permutation patterns that we call mesh patterns. Intuitively, an occurrence of the mesh pattern $p=(\pi,R)$ is an occurrence of the permutation pattern $\pi$ with additional restrictions specified by $R$ on the relative position of the entries of the occurrence. We show that, for any mesh pattern $p=(\pi,R)$, we have $\lambda_p(\tau) = (-1)^{|\tau|-|\pi|}{p}^{\star}(\tau)$ where ${p}^{\star}=(\pi,R^c)$ is the mesh pattern with the same underlying permutation as $p$ but with complementary restrictions. We use this result to expand some well known permutation statistics, such as the number of left-to-right maxima, descents, excedances, fixed points, strong fixed points, and the major index. We also show that alternating permutations, André permutations of the first kind and simsun permutations occur naturally as permutations avoiding certain mesh patterns. Finally, we provide new natural Mahonian statistics.



2011 ◽  
Vol Vol. 13 no. 1 (Combinatorics) ◽  
Author(s):  
Nicholas A. Loehr ◽  
Elizabeth Niese

Combinatorics International audience For each integer partition mu, let e (F) over tilde (mu)(q; t) be the coefficient of x(1) ... x(n) in the modified Macdonald polynomial (H) over tilde (mu). The polynomial (F) over tilde (mu)(q; t) can be regarded as the Hilbert series of a certain doubly-graded S(n)-module M(mu), or as a q, t-analogue of n! based on permutation statistics inv(mu) and maj(mu) that generalize the classical inversion and major index statistics. This paper uses the combinatorial definition of (F) over tilde (mu) to prove some recursions characterizing these polynomials, and other related ones, when mu is a two-column shape. Our result provides a complement to recent work of Garsia and Haglund, who proved a different recursion for two-column shapes by representation-theoretical methods. For all mu, we show that e (F) over tilde (mu)(q, t) is divisible by certain q-factorials and t-factorials depending on mu. We use our recursion and related tools to explain some of these factors bijectively. Finally, we present fermionic formulas that express e (F) over tilde ((2n)) (q, t) as a sum of q, t-analogues of n!2(n) indexed by perfect matchings.



10.37236/6411 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Joanna N. Chen ◽  
Shouxiao Li

Babson and Steingrímsson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian statistic in terms of generalized pattern functions, which is denoted $stat$. Given a permutation $\pi$, let $des(\pi)$ denote the descent number of $\pi$ and $maj(\pi)$ denote the major index of $\pi$. Babson and Steingrímsson conjectured that $(des,stat)$ and $(des,maj)$ are equidistributed on $S_n$. Foata and Zeilberger settled this conjecture using q-enumeration, generating functions and Maple packages ROTA and PERCY. Later, Burstein provided a bijective proof of a refinement of this conjecture. In this paper, we give a new bijective proof of this conjecture.



2016 ◽  
Vol 25 (3) ◽  
pp. 470-483
Author(s):  
MARKO THIEL

In a recent paper, Baxter and Zeilberger showed that the two most important Mahonian statistics, the inversion number and the major index, are asymptotically independently normally distributed on permutations. In another recent paper, Canfield, Janson and Zeilberger proved the result, already known to statisticians, that the Mahonian distribution is asymptotically normal on words. This leaves one question unanswered: What, asymptotically, is the joint distribution of the inversion number and the major index on words? We answer this question by establishing convergence to a bivariate normal distribution.



10.37236/6545 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Naiomi T. Cameron ◽  
Kendra Killpatrick

We consider the classical Mahonian statistics on the set $B_n(\Sigma)$ of signed permutations in the hyperoctahedral group $B_n$ which avoid all patterns in $\Sigma$, where $\Sigma$ is a set of patterns of length two.  In 2000, Simion gave the cardinality of $B_n(\Sigma)$ in the cases where $\Sigma$ contains either one or two patterns of length two and showed that $\left|B_n(\Sigma)\right|$ is constant whenever $\left|\Sigma\right|=1$, whereas in most but not all instances where $\left|\Sigma\right|=2$, $\left|B_n(\Sigma)\right|=(n+1)!$.  We answer an open question of Simion by providing bijections from $B_n(\Sigma)$ to $S_{n+1}$ in these cases where $\left|B_n(\Sigma)\right|=(n+1)!$.  In addition, we extend Simion's work by providing a combinatorial proof in the language of signed permutations for the major index on $B_n(21, \bar{2}\bar{1})$ and by giving the major index on $D_n(\Sigma)$ for $\Sigma =\{21, \bar{2}\bar{1}\}$ and $\Sigma=\{12,21\}$.  The main result of this paper is to give the inversion generating functions for $B_n(\Sigma)$ for almost all sets $\Sigma$ with $\left|\Sigma\right|\leq2.$



10.37236/190 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Adam M. Goyt ◽  
David Mathisen

In a recent paper, Goyt and Sagan studied distributions of certain set partition statistics over pattern restricted sets of set partitions that were counted by the Fibonacci numbers. Their study produced a class of $q$-Fibonacci numbers, which they related to $q$-Fibonacci numbers studied by Carlitz and Cigler. In this paper we will study the distributions of some Mahonian statistics over pattern restricted sets of permutations. We will give bijective proofs connecting some of our $q$-Fibonacci numbers to those of Carlitz, Cigler, Goyt and Sagan. We encode these permutations as words and use a weight to produce bijective proofs of $q$-Fibonacci identities. Finally, we study the distribution of some of these statistics on pattern restricted permutations that West showed were counted by even Fibonacci numbers.



10.37236/4002 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Andrew M. Baxter

We develop algorithmic tools to compute quickly the distribution of permutation statistics over sets of pattern-avoiding permutations. More specfically, the algorithms are based on enumeration schemes, the permutation statistics are based on the number of occurrences of certain vincular patterns, and the permutations avoid sets of vincular patterns. We prove that whenever a finite enumeration scheme exists to count the number of pattern-avoiding permutations, then the distribution of statistics like the number of descents can also be computed based on the same scheme. Statistics such as the number of peaks, right-to-left maxima, and the major index are also investigated, as well as multi-statistics.



1984 ◽  
Author(s):  
Lawrence A. Rowe ◽  
Michael Davis ◽  
Eli Messinger ◽  
Carl Meyer ◽  
Charles Spirakis
Keyword(s):  


1985 ◽  
Author(s):  
Carl Meyer
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document