scholarly journals A Polynomial Bound on the Mixing Time of a Markov Chain for Sampling Regular Directed Graphs

10.37236/721 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Catherine Greenhill

The switch chain is a well-known Markov chain for sampling directed graphs with a given degree sequence. While not ergodic in general, we show that it is ergodic for regular degree sequences. We then prove that the switch chain is rapidly mixing for regular directed graphs of degree $d$, where $d$ is any positive integer-valued function of the number of vertices. We bound the mixing time by bounding the eigenvalues of the chain. A new result is presented and applied to bound the smallest (most negative) eigenvalue. This result is a modification of a lemma by Diaconis and Stroock [Annals of Applied Probability 1991], and by using it we avoid working with a lazy chain. A multicommodity flow argument is used to bound the second-largest eigenvalue of the chain. This argument is based on the analysis of a related Markov chain for undirected regular graphs by Cooper, Dyer and Greenhill [Combinatorics, Probability and Computing 2007], but with significant extension required.

10.37236/3028 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
István Miklós ◽  
Péter L Erdős ◽  
Lajos Soukup

In this paper we consider a simple Markov chain for bipartite graphs with given degree sequence on $n$ vertices. We show that the mixing time of this Markov chain is bounded above by a polynomial in $n$ in case of half-regular degree sequence. The novelty of our approach lies in the construction of the multicommodity flow in Sinclair's method.


2017 ◽  
Vol 27 (2) ◽  
pp. 186-207
Author(s):  
PÉTER L. ERDŐS ◽  
ISTVÁN MIKLÓS ◽  
ZOLTÁN TOROCZKAI

In network modelling of complex systems one is often required to sample random realizations of networks that obey a given set of constraints, usually in the form of graph measures. A much studied class of problems targets uniform sampling of simple graphs with given degree sequence or also with given degree correlations expressed in the form of a Joint Degree Matrix. One approach is to use Markov chains based on edge switches (swaps) that preserve the constraints, are irreducible (ergodic) and fast mixing. In 1999, Kannan, Tetali and Vempala (KTV) proposed a simple swap Markov chain for sampling graphs with given degree sequence, and conjectured that it mixes rapidly (in polynomial time) for arbitrary degree sequences. Although the conjecture is still open, it has been proved for special degree sequences, in particular for those of undirected and directed regular simple graphs, half-regular bipartite graphs, and graphs with certain bounded maximum degrees. Here we prove the fast mixing KTV conjecture for novel, exponentially large classes of irregular degree sequences. Our method is based on a canonical decomposition of degree sequences into split graph degree sequences, a structural theorem for the space of graph realizations and on a factorization theorem for Markov chains. After introducing bipartite ‘splitted’ degree sequences, we also generalize the canonical split graph decomposition for bipartite and directed graphs.


10.37236/9652 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Péter L. Erdős ◽  
Ervin Győri ◽  
Tamás Róbert Mezei ◽  
István Miklós ◽  
Dániel Soltész

One of the simplest methods of generating a random graph with a given degree sequence is provided by the Monte Carlo Markov Chain method using switches. The switch Markov chain converges to the uniform distribution, but generally the rate of convergence is not known. After a number of results concerning various degree sequences, rapid mixing was established for so-called P-stable degree sequences (including that of directed graphs), which covers every previously known rapidly mixing region of degree sequences. In this paper we give a non-trivial family of degree sequences that are not P-stable and the switch Markov chain is still rapidly mixing on them. This family has an intimate connection to Tyshkevich-decompositions and strong stability as well.


2013 ◽  
Vol 22 (3) ◽  
pp. 366-383 ◽  
Author(s):  
PÉTER L. ERDŐS ◽  
ZOLTÁN KIRÁLY ◽  
ISTVÁN MIKLÓS

One of the first graph-theoretical problems to be given serious attention (in the 1950s) was the decision whether a given integer sequence is equal to the degree sequence of a simple graph (orgraphical, for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on theswapoperation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another of the same degree sequence. This latter problem has received particular attention in the context of rapidly mixing Markov chain approaches to uniform sampling of all possible realizations of a given degree sequence. (This becomes a matter of interest in the context of the study of large social networks, for example.) Previously there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for theswap-distances of any two realizations of simple undirected or directed degree sequences. These identities considerably improve the known upper bounds on the swap-distances.


10.37236/338 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Péter L. Erdős ◽  
István Miklós ◽  
Zoltán Toroczkai

One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studies cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.


2002 ◽  
Vol 11 (1) ◽  
pp. 21-34 ◽  
Author(s):  
LESLIE ANN GOLDBERG ◽  
MARK JERRUM

We consider the problem of sampling ‘unlabelled structures’, i.e., sampling combinatorial structures modulo a group of symmetries. The main tool which has been used for this sampling problem is Burnside’s lemma. In situations where a significant proportion of the structures have no nontrivial symmetries, it is already fairly well understood how to apply this tool. More generally, it is possible to obtain nearly uniform samples by simulating a Markov chain that we call the Burnside process: this is a random walk on a bipartite graph which essentially implements Burnside’s lemma. For this approach to be feasible, the Markov chain ought to be ‘rapidly mixing’, i.e., converge rapidly to equilibrium. The Burnside process was known to be rapidly mixing for some special groups, and it has even been implemented in some computational group theory algorithms. In this paper, we show that the Burnside process is not rapidly mixing in general. In particular, we construct an infinite family of permutation groups for which we show that the mixing time is exponential in the degree of the group.


1987 ◽  
Vol 1 (1) ◽  
pp. 33-46 ◽  
Author(s):  
David Aldous

Uniform distributions on complicated combinatorial sets can be simulated by the Markov chain method. A condition is given for the simulations to be accurate in polynomial time. Similar analysis of the simulated annealing algorithm remains an open problem. The argument relies on a recent eigenvalue estimate of Alon [4]; the only new mathematical ingredient is a careful analysis of how the accuracy of sample averages of a Markov chain is related to the second-largest eigenvalue.


2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.


10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


Sign in / Sign up

Export Citation Format

Share Document