scholarly journals Randomly Weighted $d$-Complexes: Minimal Spanning Acycles and Persistence Diagrams

10.37236/8679 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Primoz Skraba ◽  
Gugan Thoppe ◽  
D. Yogeshwaran

A weighted $d$-complex is a simplicial complex of dimension $d$ in which each face is assigned a real-valued weight. We derive three key results here concerning persistence diagrams and minimal spanning acycles (MSAs) of such complexes. First, we establish an equivalence between the MSA face-weights and death times in the persistence diagram. Next, we show a novel stability result for the MSA face-weights which, due to our first result, also  holds true for the death and birth times, separately. Our final result concerns a perturbation of a mean-field model of randomly weighted $d$-complexes. The $d$-face weights here are perturbations of some i.i.d. distribution while all the lower-dimensional faces have a weight of $0$. If the perturbations decay sufficiently quickly, we show that suitably scaled extremal nearest face-weights, face-weights of the $d$-MSA, and the associated death times converge to an inhomogeneous Poisson point process. This result completely characterizes the extremal points of persistence diagrams and MSAs. The point process convergence and the asymptotic equivalence of three point processes are new for any weighted random complex model, including even the non-perturbed case. Lastly, as a consequence of our stability result, we show that Frieze's $\zeta(3)$ limit for random minimal spanning trees and the recent extension to random MSAs by Hino and Kanazawa also hold in suitable noisy settings.

2021 ◽  
Vol 115 (2) ◽  
pp. 177-190
Author(s):  
Adam J. Peterson

AbstractThe inhomogeneous Poisson point process is a common model for time series of discrete, stochastic events. When an event from a point process is detected, it may trigger a random dead time in the detector, during which subsequent events will fail to be detected. It can be difficult or impossible to obtain a closed-form expression for the distribution of intervals between detections, even when the rate function (often referred to as the intensity function) and the dead-time distribution are given. Here, a method is presented to numerically compute the interval distribution expected for any arbitrary inhomogeneous Poisson point process modified by dead times drawn from any arbitrary distribution. In neuroscience, such a point process is used to model trains of neuronal spikes triggered by the detection of excitatory events while the neuron is not refractory. The assumptions of the method are that the process is observed over a finite observation window and that the detector is not in a dead state at the start of the observation window. Simulations are used to verify the method for several example point processes. The method should be useful for modeling and understanding the relationships between the rate functions and interval distributions of the event and detection processes, and how these relationships depend on the dead-time distribution.


2021 ◽  
Vol 48 (3) ◽  
pp. 128-129
Author(s):  
Sounak Kar ◽  
Robin Rehrmann ◽  
Arpan Mukhopadhyay ◽  
Bastian Alt ◽  
Florin Ciucu ◽  
...  

We analyze a data-processing system with n clients producing jobs which are processed in batches by m parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function that arises due to overhead amortization. In practice, throughput optimization relies on numerical searches for the optimal batch size which is computationally cumbersome. In this paper, we model this system in terms of a closed queueing network assuming certain forms of service speedup; a standard Markovian analysis yields the optimal throughput in w n4 time. Our main contribution is a mean-field model that has a unique, globally attractive stationary point, derivable in closed form. This point characterizes the asymptotic throughput as a function of the batch size that can be calculated in O(1) time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes.


2020 ◽  
Vol 57 (4) ◽  
pp. 1298-1312
Author(s):  
Martin Dirrler ◽  
Christopher Dörr ◽  
Martin Schlather

AbstractMatérn hard-core processes are classical examples for point processes obtained by dependent thinning of (marked) Poisson point processes. We present a generalization of the Matérn models which encompasses recent extensions of the original Matérn hard-core processes. It generalizes the underlying point process, the thinning rule, and the marks attached to the original process. Based on our model, we introduce processes with a clear interpretation in the context of max-stable processes. In particular, we prove that one of these processes lies in the max-domain of attraction of a mixed moving maxima process.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2021 ◽  
Vol 58 (2) ◽  
pp. 469-483
Author(s):  
Jesper Møller ◽  
Eliza O’Reilly

AbstractFor a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.


1993 ◽  
Vol 30 (02) ◽  
pp. 365-372 ◽  
Author(s):  
Søren Asmussen ◽  
Ger Koole

A Markovian arrival stream is a marked point process generated by the state transitions of a given Markovian environmental process and Poisson arrival rates depending on the environment. It is shown that to a given marked point process there is a sequence of such Markovian arrival streams with the property that as m →∞. Various related corollaries (involving stationarity, convergence of moments and ergodicity) and counterexamples are discussed as well.


Author(s):  
Jack Poulson

Determinantal point processes (DPPs) were introduced by Macchi (Macchi 1975 Adv. Appl. Probab. 7 , 83–122) as a model for repulsive (fermionic) particle distributions. But their recent popularization is largely due to their usefulness for encouraging diversity in the final stage of a recommender system (Kulesza & Taskar 2012 Found. Trends Mach. Learn. 5 , 123–286). The standard sampling scheme for finite DPPs is a spectral decomposition followed by an equivalent of a randomly diagonally pivoted Cholesky factorization of an orthogonal projection, which is only applicable to Hermitian kernels and has an expensive set-up cost. Researchers Launay et al. 2018 ( http://arxiv.org/abs/1802.08429 ); Chen & Zhang 2018 NeurIPS ( https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf ) have begun to connect DPP sampling to LDL H factorizations as a means of avoiding the initial spectral decomposition, but existing approaches have only outperformed the spectral decomposition approach in special circumstances, where the number of kept modes is a small percentage of the ground set size. This article proves that trivial modifications of LU and LDL H factorizations yield efficient direct sampling schemes for non-Hermitian and Hermitian DPP kernels, respectively. Furthermore, it is experimentally shown that even dynamically scheduled, shared-memory parallelizations of high-performance dense and sparse-direct factorizations can be trivially modified to yield DPP sampling schemes with essentially identical performance. The software developed as part of this research, Catamari ( hodgestar.com/catamari ) is released under the Mozilla Public License v.2.0. It contains header-only, C++14 plus OpenMP 4.0 implementations of dense and sparse-direct, Hermitian and non-Hermitian DPP samplers. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.


1983 ◽  
Vol 15 (01) ◽  
pp. 39-53 ◽  
Author(s):  
Ed Waymire ◽  
Vijay K. Gupta

The Pólya process is employed to illustrate certain features of the structure of infinitely divisible stochastic point processes in connection with the representation for the probability generating functional introduced by Milne and Westcott in 1972. The Pólya process is used to provide a counterexample to the result of Ammann and Thall which states that the class of stochastic point processes with the Milne and Westcott representation is the class of regular infinitely divisble point processes. So the general representation problem is still unsolved. By carrying the analysis of the Pólya process further it is possible to see the extent to which the general representation is valid. In fact it is shown in the case of the Pólya process that there is a critical value of a parameter above which the representation breaks down. This leads to a proper version of the representation in the case of regular infinitely divisible point processes.


Sign in / Sign up

Export Citation Format

Share Document