scholarly journals Identifying Codes of Cartesian Product of Two Cliques of the Same Size

10.37236/879 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
S. Gravier ◽  
J. Moncel ◽  
A. Semri

We determine the minimum cardinality of an identifying code of $K_n\square K_n$, the Cartesian product of two cliques of same size. Moreover we show that this code is unique, up to row and column permutations, when $n\geq 5$ is odd. If $n\geq 4$ is even, we exhibit two distinct optimal identifying codes.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050046
Author(s):  
R. Nikandish ◽  
O. Khani Nasab ◽  
E. Dodonge

For a vertex [Formula: see text] of a graph [Formula: see text], let [Formula: see text] be the set of [Formula: see text] with all of its neighbors in [Formula: see text]. A set [Formula: see text] of vertices is an identifying code of [Formula: see text] if the sets [Formula: see text] are nonempty and distinct for all vertices [Formula: see text] of [Formula: see text]. If [Formula: see text] admits an identifying code, then [Formula: see text] is called identifiable and the minimum cardinality of an identifying code of [Formula: see text] is denoted by [Formula: see text]. Let [Formula: see text] be two positive integers. In this paper, [Formula: see text] and [Formula: see text] are computed, where [Formula: see text] and [Formula: see text] represent the complement of a path and the complement of a cycle of order [Formula: see text], respectively. Among other results, [Formula: see text] is given, where [Formula: see text] is obtained from [Formula: see text] after deleting a maximum matching.



Author(s):  
Ahmed Semri ◽  
Hillal Touati

Identifying codes in graphs are related to the classical notion of dominating sets [1]. Since there first introduction in 1998 [2], they have been widely studied and extended to several application, such as: detection of faulty processor in multiprocessor systems, locating danger or threats in sensor networks. Let G=(V,E) an unoriented connected graph. The minimum identifying code in graphs is the smallest subset of vertices C, such that every vertex in V have a unique set of neighbors in C. In our work, we focus on finding minimum cardinality of an identifying code in oriented paths and circuits



10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.



10.37236/1583 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Irène Charon ◽  
Iiro Honkala ◽  
Olivier Hudry ◽  
Antoine Lobstein

Consider a connected undirected graph $G=(V,E)$ and a subset of vertices $C$. If for all vertices $v \in V$, the sets $B_r(v) \cap C$ are all nonempty and pairwise distinct, where $B_r(v)$ denotes the set of all points within distance $r$ from $v$, then we call $C$ an $r$-identifying code. We give general lower and upper bounds on the best possible density of $r$-identifying codes in three infinite regular graphs.



2019 ◽  
Vol 53 (1) ◽  
pp. 261-268
Author(s):  
D. Doğan Durgun ◽  
Ali Bagatarhan

The interconnection networks are modeled by means of graphs to determine the reliability and vulnerability. There are lots of parameters that are used to determine vulnerability. The average covering number is one of them which is denoted by $ \overline{\beta }(G)$, where G is simple, connected and undirected graph of order n ≥ 2. In a graph G = (V(G), E(G)) a subset $ {S}_v\subseteq V(G)$ of vertices is called a cover set of G with respect to v or a local covering set of vertex v, if each edge of the graph is incident to at least one vertex of Sv. The local covering number with respect to v is the minimum cardinality of among the Sv sets and denoted by βv. The average covering number of a graph G is defined as β̅(G) = 1/|v(G)| ∑ν∈v(G)βν In this paper, the average covering numbers of kth power of a cycle $ {C}_n^k$ and Pn □ Pm, Pn □ Cm, cartesian product of Pn and Pm, cartesian product of Pn and Cm are given, respectively.



2014 ◽  
Vol 27 ◽  
Author(s):  
Benham Hashemi ◽  
Mahtab Mirzaei Khalilabadi ◽  
Hanieh Tavakolipour

This paper extends the concept of tropical tensor product defined by Butkovic and Fiedler to general idempotent dioids. Then, it proposes an algorithm in order to solve the fixed-point type Sylvester matrix equations of the form X = A ⊗ X ⊕ X ⊗ B ⊕ C. An application is discussed in efficiently solving the minimum cardinality path problem in Cartesian product graphs.



10.37236/2974 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Min Feng ◽  
Min Xu ◽  
Kaishun Wang

Let $G$ be a connected graph and $H$ be an arbitrary graph. In this paper, we study the identifying codes of the lexicographic product $G[H]$ of $G$ and $H$. We first introduce two parameters of $H$, which are closely related to identifying codes of $H$. Then we provide the sufficient and necessary condition for $G[H]$ to be identifiable. Finally, if $G[H]$ is identifiable, we determine the minimum cardinality of identifying codes of $G[H]$ in terms of the order of $G$ and these two parameters of $H$.



Author(s):  
J. Maria Regila Baby ◽  
K. Uma Samundesvari

A total dominating set [Formula: see text] is said to be a complete cototal dominating set if [Formula: see text] has no isolated nodes and it is represented by [Formula: see text]. The complete cototal domination number, represented by [Formula: see text], is the minimum cardinality of a [Formula: see text] set of [Formula: see text]. In this paper, the bounds for complete cototal domination number of Cartesian product graphs and complement graphs are determined.







Sign in / Sign up

Export Citation Format

Share Document