scholarly journals Affine type A geometric crystal structure on the Grassmannian

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Gabriel Frieden

International audience We construct a type A(1) n−1 affine geometric crystal structure on the Grassmannian Gr(k, n). The tropicalization of this structure recovers the combinatorics of crystal operators on semistandard Young tableaux of rectangular shape (with n − k rows), including the affine crystal operator e 0. In particular, the promotion operation on these tableaux essentially corresponds to cyclically shifting the Plu ̈cker coordinates of the Grassmannian.

10.37236/9168 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Jennifer Morse ◽  
Jianping Pan ◽  
Wencin Poh ◽  
Anne Schilling

We introduce a type $A$ crystal structure on decreasing factorizations of fully-commu\-tative elements in the 0-Hecke monoid which we call $\star$-crystal. This crystal is a $K$-theoretic generalization of the crystal on decreasing factorizations in the symmetric group of the first and last author. We prove that under the residue map the $\star$-crystal intertwines with the crystal on set-valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new insertion also intertwines with the crystal operators.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Michael Chmutov ◽  
Pavlo Pylyavskyy ◽  
Elena Yudovina

International audience In his study of Kazhdan-Lusztig cells in affine type A, Shi has introduced an affine analog of Robinson- Schensted correspondence. We generalize the Matrix-Ball Construction of Viennot and Fulton to give a more combi- natorial realization of Shi's algorithm. As a biproduct, we also give a way to realize the affine correspondence via the usual Robinson-Schensted bumping algorithm. Next, inspired by Honeywill, we extend the algorithm to a bijection between extended affine symmetric group and triples (P, Q, ρ) where P and Q are tabloids and ρ is a dominant weight. The weights ρ get a natural interpretation in terms of the Affine Matrix-Ball Construction. Finally, we prove that fibers of the inverse map possess a Weyl group symmetry, explaining the dominance condition on weights.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics involved in our formulas gives the Kostka-Foulkes polynomials and discuss how this can be applied to study the transition matrices between Hall-Littlewood and $k$-Schur functions. Nous présentons une nouvelle description, issue de l'ordre de Bruhat du groupe de Weyl affine de type $A$, de la règle de Pieri pour les fonctions $k$-Schur. Ce faisant, nous obtenons une nouvelle formule combinatoire pour les représentants des classes de Schubert de la cohomologie des Grassmannienne affines. Nous décrivons aussi comment notre approche permet d'obtenir les polynômes de Kostka-Foulkes et comment elle peut être appliquée à l’étude des matrices de transition entre les polynômes de Hall-Littlewood et les fonctions $k$-Schur.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Jonah Blasiak

International audience We identify a subalgebra $\widehat{\mathscr{H}}^+_n$ of the extended affine Hecke algebra $\widehat{\mathscr{H}}_n$ of type $A$. The subalgebra $\widehat{\mathscr{H}}^+_n$ is a u-analogue of the monoid algebra of $\mathcal{S}_n ⋉ℤ_≥0^n$ and inherits a canonical basis from that of $\widehat{\mathscr{H}}_n$. We show that its left cells are naturally labeled by tableaux filled with positive integer entries having distinct residues mod $n$, which we term positive affine tableaux (PAT). We then exhibit a cellular subquotient $\mathscr{R}_1^n$ of $\widehat{\mathscr{H}}^+_n$ that is a $u$-analogue of the ring of coinvariants $ℂ[y_1,\ldots,y_n]/(e_1, \ldots,e_n)$ with left cells labeled by PAT that are essentially standard Young tableaux with cocharge labels. Multiplying canonical basis elements by a certain element $*π ∈ \widehat{\mathscr{H}}^+_n$ corresponds to rotations of words, and on cells corresponds to cocyclage. We further show that $\mathscr{R}_1^n$ has cellular quotients $\mathscr{R}_λ$ that are $u$-analogues of the Garsia-Procesi modules $R_λ$ with left cells labeled by (a PAT version of) the $λ$ -catabolizable tableaux. On définit une sous-algèbre $\widehat{\mathscr{H}}^+_n$ de l'extension affine de l'algèbre de Hecke \$\widehat{\mathscr{H}}_n$ de type $A$. La sous-algèbre $\widehat{\mathscr{H}}^+_n$ est $u$-analogue à l'algèbre monoïde de $\mathcal{S}_n ⋉ℤ_≥0^n$ et hérite d'une base canonique de $\widehat{\mathscr{H}}_n$. On montre que ses cellules gauches sont naturellement classées par des tableaux remplis d'entiers naturels ayant chacun des restes différents modulo $n$, que l'on nomme Positive Affine Tableaux (PAT). On montre ensuite qu'un sous-quotient cellulaire $\mathscr{R}_1^n$ de $\widehat{\mathscr{H}}^+_n$ est une $u$-analogue de l'anneau des co-invariants $ℂ[y_1,\ldots,y_n]/(e_1, \ldots,e_n)$ avec des cellules gauches classées PAT qui sont essentiellement des tableaux de Young standards avec des labels cochargés. Multiplier les éléments de la base canonique par un certain élément $π ∈ \widehat{\mathscr{H}}^+_n$ correspond à des rotations de mots, et par rapport aux cellules cela correspond à un cocyclage. Plus loin, on montre que $\mathscr{R}_1^n$ a pour quotients cellulaires $\mathscr{R}_λ$ qui sont $u$- analogues aux modules de Garsia-Procesi $R_λ$ avec des cellules gauches définies par (une version PAT) des tableaux $λ$ -catabolisable.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Jean-Philippe Labbé ◽  
Christian Stump

International audience We present a family of simplicial complexes called \emphmulti-cluster complexes. These complexes generalize the concept of cluster complexes, and extend the notion of multi-associahedra of types ${A}$ and ${B}$ to general finite Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple combinatorial description of the compatibility relation among the set of almost positive roots in the cluster complex. Nous présentons une famille de complexes simpliciaux appelés \emphcomplexes des multi-amas. Ces complexes généralisent le concept de complexes des amas et étendent la notion de multi-associaèdre de type ${A}$ et ${B}$ aux groupes de Coxeter finis. Nous étudions des propriétés combinatoires et géométriques de ces objets et, en particulier nous fournissons une description combinatoire simple de la relation de compatibilité sur l'ensemble des racines presque positives du complexe des amas.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.


10.37236/9235 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
João Miguel Santos

We compute, mimicking the Lascoux-Schützenberger type A combinatorial procedure, left and right keys for a Kashiwara-Nakashima tableau in type C. These symplectic keys have a similar role as the keys for semistandard Young tableaux. More precisely, our symplectic keys give a tableau criterion for the Bruhat order on the hyperoctahedral group and cosets, and describe Demazure atoms and characters in type C. The right and the left symplectic keys are related through the Lusztig involution. A type C Schützenberger evacuation is defined to realize that involution.


1977 ◽  
Vol 32 (6) ◽  
pp. 619-624 ◽  
Author(s):  
Axel Widera ◽  
Herbert Schäfer

The new intermetallic compound Ba10Al3Ge7 crystallizes hexagonal in a new structure type (a = 974.9(5) pm, c =1647(1) pm, c/a = 1.69, P63/mcm). The Al-atoms, together with the Ge-atoms, form propeller-like Al3Ge7-units.


2008 ◽  
Vol 4 (8) ◽  
pp. e1000129 ◽  
Author(s):  
Pål Stenmark ◽  
Jérôme Dupuy ◽  
Akihiro Imamura ◽  
Makoto Kiso ◽  
Raymond C. Stevens

Sign in / Sign up

Export Citation Format

Share Document