Sneak Circuit Analysis Based on Novel Coadjacent Neural Network Model for Reliability Control of Complex System

2009 ◽  
Vol 34 (2) ◽  
pp. 188-194
Author(s):  
Chang-Hua HU
2009 ◽  
Vol 18 (08) ◽  
pp. 1339-1351
Author(s):  
QI XINZHAN ◽  
LIU BINGJIE ◽  
JIA XINGLIANG

Neural network was introduced to sneak circuit analysis (SCA) in previous works. However, it may generate suspect results which were hard to explain. To overcome the shortcomings, this paper proposed a novel neural network model based on circuit architecture, named CArNN, which is used as an individual of an ensemble. In CArNN, neurons represented system components, and weights represented the joints between components. Models of neurons are sigmoid functions. Clone selection algorithm was used to train CArNNs population. The trained antibodies were used as individuals of an ensemble. The inputs of CArNN are states of switches, and the outputs are states of functional components. Ensemble predicted all possible functions of circuit. The sneak circuits can be discovered by comparing the predicted and designed functions. The results revealed that CArNNs can exactly discover sneak circuits.


Author(s):  
Seetharam .K ◽  
Sharana Basava Gowda ◽  
. Varadaraj

In Software engineering software metrics play wide and deeper scope. Many projects fail because of risks in software engineering development[1]t. Among various risk factors creeping is also one factor. The paper discusses approximate volume of creeping requirements that occur after the completion of the nominal requirements phase. This is using software size measured in function points at four different levels. The major risk factors are depending both directly and indirectly associated with software size of development. Hence It is possible to predict risk due to creeping cause using size.


2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


Sign in / Sign up

Export Citation Format

Share Document