Water-saving irrigation modes based on water supply and demand of winter wheat and summer maize

2013 ◽  
Vol 21 (8) ◽  
pp. 951-958 ◽  
Author(s):  
Xiao-Yuan LIU ◽  
Shao-Hui XU ◽  
Jun-Ling CUI ◽  
Qing CHI
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1522 ◽  
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Mahshid Ghanbari ◽  
Travis Warziniack

Changes in climate, land use, and population can increase annual and interannual variability of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins (Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections. The results from the case study indicate that the mixture model leads to enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic approach presented in this study provides a procedure to update sub-annual socioeconomic drought IDF curves while taking into account changes in water supply and demand conditions.


Asian Survey ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 1116-1136
Author(s):  
Amit Ranjan

The widening gap between water supply and demand is the biggest threat and challenge before Pakistan. Of the available water, much is polluted. Both scarcity and pollution threaten the agriculture sector, on which the country’s economy depends.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 208
Author(s):  
Andrew Borrell ◽  
Barbara George-Jaeggli ◽  
Erik van Oosterom ◽  
Graeme Hammer ◽  
Emma Mace ◽  
...  

Plants are sessile organisms requiring mechanisms that enable them to balance water supply and demand in dry environments. Demand (D) is largely driven by canopy size (transpirational leaf area), although differences in transpiration per unit leaf area also occur. Supply (S) is primarily driven by water capture via the root system. Drought stress can be defined as the situation where supply of water cannot meet demand of the crop, such that water availability is the limiting factor for biomass accumulation. Under such conditions, plants will need to reduce D in order to meet the limited S, access more water to increase S, or increase the efficiency with which water is utilised. We used sorghum, a model C4 crop species, to demonstrate how the stay-green trait can modulate canopy development and root architecture to enhance adaptation. We show how stay-green positively impacts the balance between S and D under post-flowering drought, including insights at the molecular level. We provide examples of how canopy and root traits impact the S/D balance in other cereals under water limitation. For example, on the supply side, the extent of genetic variation for root angle (RA) has been evaluated in sorghum, wheat and barley, and genomic regions associated with RA have been mapped. Furthermore, the relationship between RA and grain yield has been explored in barley and sorghum field trials. The capacity to manipulate components of S and D to optimise the S/D balance should assist crop improvement programs to develop enhanced ideotypes for dry environments.


Sign in / Sign up

Export Citation Format

Share Document