scholarly journals Assessment of Water Supply and Demand in the Lower Mahi Sub-basin using WEAP Model

Author(s):  
K ManiRanjan ◽  
K Shashi Ranjan ◽  
T Roshni ◽  
J Drisya
2017 ◽  
Author(s):  
Jared Ouma okungu

The counties traversed by Yala River Catchment in Kenya have been constrained by acute shortages of water resources because of the declining stream flows, which is occasioned by environmental changes, increasing population and changing land uses. This study applied Water Evaluation and Planning (WEAP) model to evaluate past trends and simulate current demand scenarios for the purposes of planning by authorities in regard to future use. The study used historical data (1970-2015) to assess water supply and demand in the catchment for the period 2016 to 2045 by simulation. Calibration and validation were each performed on 10-year streamflow datasets (1991-2000 and 2001-2010 respectively), drawn from 4 gauging stations. Simulations were then conducted for the scenarios namely: Reference (at 2.8% growth rate), High Growth (3.2%), High Growth (3.5%), and Moderated Growth (2.2%). The categories of water demand evaluated in WEAP included: Domestic-Institutional-Municipal, Agriculture, and Industry uses. In a 5-year time-step, WEAP demonstrated resultant increase in water demand for year 2020 by 7.46% from 2016 at Reference Scenario. WEAP further simulated a gradual increase in water demand during subsequent years. This trend would continue for the rest of the scenarios but with variations occasioned by adjustment of variables in WEAP such as population growth rates, monthly variations, annual activity levels, water use rates, water losses and reuse rates, industrial production units, agricultural acreages, and varied demand sites. In conclusion, there were demonstrated substantial increases in water demands within individual scenarios between 2016 to 2045, but these increases were significantly different scenario-by-scenario. The study recommends that supply and demand measures be employed with the aim of regulating activity levels, losses and consumptions so as to meet demands in case any of the studied scenarios would be applicable.


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Nurul Nadiah Mohd Firdaus Hum ◽  
Suhaimi Abdul Talib

Water in Selangor is getting scarce due to its rapid economic growth. A fast growing population and expanding urbanization in the state creates new demands for water availability. Thus, the present study analyses the effects of three different scenarios using Water Evaluation and Planning (WEAP) model to evaluate the plausible future water scenarios of water availability in Selangor. The first scenario is business as usual which is later referred to as reference in this study. Second, higher population growth and the third is the application of the demand side management onto the reference and higher population growth scenario. These scenarios were then used to calculate the impact on the supply – demand gap by the year 2050. Two catchments were used namely Selangor and Langat to illustrate the water supply and demand in the state of Selangor. The study then generates information for use in managing water allocations amongst economic sectors in Selangor as the explicit accounting in the description of the water supply and demand among the urban and industry water usage is advocated. Such detailed scenario simulation and the inclusion of previously unaccounted for factors like the higher population growth and water savings management can help to create awareness of potential future problems, inform water practices and suggest management alternatives. Results show that with proper water savings measures, water deficit within Selangor will be significantly reduced.  


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1522 ◽  
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Mahshid Ghanbari ◽  
Travis Warziniack

Changes in climate, land use, and population can increase annual and interannual variability of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins (Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections. The results from the case study indicate that the mixture model leads to enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic approach presented in this study provides a procedure to update sub-annual socioeconomic drought IDF curves while taking into account changes in water supply and demand conditions.


Asian Survey ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 1116-1136
Author(s):  
Amit Ranjan

The widening gap between water supply and demand is the biggest threat and challenge before Pakistan. Of the available water, much is polluted. Both scarcity and pollution threaten the agriculture sector, on which the country’s economy depends.


Sign in / Sign up

Export Citation Format

Share Document