THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY

2012 ◽  
Vol 48 (1) ◽  
pp. 33 ◽  
Author(s):  
Peng ZHAO ◽  
Shuangming LI ◽  
Hengzhi FU
1999 ◽  
Vol 395 ◽  
pp. 253-270 ◽  
Author(s):  
Y.-J. CHEN ◽  
S. H. DAVIS

A steady, two-dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behaviour of the moving front is described by a slow, spatial–temporal dynamics obtained through a multiple-scale analysis. The resulting system has a parametric-excitation structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection in general stabilizes two-dimensional disturbances, but destabilizes three-dimensional disturbances. When the flow is weak, the morphological instability is incommensurate with the flow wavelength, but as the flow gets stronger, the instability becomes quantized and forced to fit into the flow box. At large flow strength the instability is localized, confined in narrow envelopes. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear interaction is delivered through the Lyapunov–Schmidt method.


1997 ◽  
Vol 55 (2) ◽  
pp. 824-836 ◽  
Author(s):  
Hwei-Yen Yang ◽  
Chi-Chuan Hwang ◽  
Yong-Yuan Luo ◽  
Jin-Yuan Hsieh

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Gideon Ukpai ◽  
Boris Rubinsky

Abstract Horizontal directional solidification techniques have been broadly utilized for the freezing of biological matter under conditions in which the freezing rate during solidification must be controlled and known. Directional solidification is used for diverse applications such as fundamental research on freezing of biological materials, cryopreservation of biological matter, and tissue engineering. This study is motivated by our intent to use directional solidification as a simplified model for the study of three-dimensional (3D) cryoprinting. In evaluating directional solidification in the context of 3D cryoprinting, we realized that current mathematical models of directional solidification are not adequately representative for this purpose, because they are simplified and one-dimensional (1D). Here, we introduce an experimentally verified and more representative two-dimensional (2D) mathematical model of directional solidification that can aid in the fundamental study of freezing of biological matter, in particular during 3D cryoprinting. The mathematical model was used to develop correlations between the freezing rates that a layer of an aqueous solution experiences during directional solidification and the various design parameters such as thickness of the sample and temperature gradients in the substrate. Results show that the freezing rates can be higher than those suggested by the previously used simplified 1D mathematical models. The results can be used for developing simplified models of 3D cryoprinting. In addition, the results suggest that many experimental studies on directional solidification of aqueous solutions and biological matter may require readjustment of analysis, in view of these findings.


Sign in / Sign up

Export Citation Format

Share Document