Changes of Grassland Vegetation Growth in Xilin Gol League over 10 Years and Analysis on the Influence Factors

2013 ◽  
Vol 15 (2) ◽  
pp. 270 ◽  
Author(s):  
Haida YU ◽  
Xiuchun YANG ◽  
Bin XU ◽  
Yunxiang JIN ◽  
Tian GAO ◽  
...  
Author(s):  
S. Chen ◽  
X. Cui ◽  
T. Liang

Snow/ice accumulation and melt, as a vital part of hydrological processes, is close related with vegetation activities. Taking Namco basin for example, based on multisource remote sensing data and the ground observation data of temperature and precipitation, phenological information was extracted by S-G filtering and dynamic threshold method. Daily snow cover fraction was calculated with daily cloud-free snow cover maps. Evolution characteristics of grassland vegetation greening, growth length and daily snow cover fraction and their relationship were analyzed from 2001 to 2013. The results showed that most of grassland vegetation had advanced greening and prolong growth length trend in Namco basin. There were negative correlations between snow cover fraction and vegetation greening or growth length. The response of vegetation phenology to snow cover fraction is more sensitive than that to temperature in spring. Meanwhile, vegetation growth condition turned worse with advanced greening and prolong growth length. To a certain extent, our research reveals the relationship between grassland vegetation growth cycle and snow in alpine ecosystem. It has provided reference to research the response mechanism of alpine grassland ecosystem to climate changes.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1262
Author(s):  
Aiwu Zhang ◽  
Shaoxing Hu ◽  
Xizhen Zhang ◽  
Taipei Zhang ◽  
Mengnan Li ◽  
...  

Monitoring grassland vegetation growth is of vital importance to scientific grazing and grassland management. People expect to be able to use a portable device, like a mobile phone, to monitor grassland vegetation growth at any time. In this paper, we propose a handheld grassland vegetation monitoring system to achieve the goal of monitoring grassland vegetation growth. The system includes two parts: the hardware unit is a hand-held multispectral imaging tool named ASQ-Discover based on a smartphone, which has six bands (wavelengths)—including three visible bands (450 nm, 550 nm, 650 nm), a red-edge band (750 nm), and two near-infrared bands (850 nm, 960 nm). The imagery data of each band has a size of 5120 × 3840 pixels with 8-bit depth. The software unit improves image quality through vignetting removal, radiometric calibration, and misalignment correction and estimates and analyzes spectral traits of grassland vegetation (Fresh Grass Ratio (FGR), NDVI, NDRE, BNDVI, GNDVI, OSAVI and TGI) that are indicators of vegetation growth in grassland. We introduce the hardware and software unit in detail, and we also experiment in five pastures located in Haiyan County, Qinghai Province. Our experimental results show that the handheld grassland vegetation growth monitoring system has the potential to revolutionize the grassland monitoring that operators can conduct when using a hand-held tool to achieve the tasks of grassland vegetation growth monitoring.


Sign in / Sign up

Export Citation Format

Share Document