xilingol grassland
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1938
Author(s):  
Han Aricha ◽  
Huasai Simujide ◽  
Chunjie Wang ◽  
Jian Zhang ◽  
Wenting Lv ◽  
...  

Mongolian cattle from China have strong adaptability and disease resistance. We aimed to compare the gut microbiota community structure and diversity in grazing Mongolian cattle from different regions in Inner Mongolia and to elucidate the influence of geographical factors on the intestinal microbial community structure. We used high throughput 16S rRNA sequencing to analyze the fecal microbial community and diversity in samples from 60 grazing Mongolian cattle from Hulunbuir Grassland, Xilingol Grassland, and Alxa Desert. A total of 2,720,545 high-quality reads and sequences that were 1,117,505,301 bp long were obtained. Alpha diversity among the three groups showed that the gut microbial diversity in Mongolian cattle in the grasslands was significantly higher than that in the desert. The dominant phyla were Firmicutes and Bacteroidetes, whereas Verrucomicrobia presented the highest abundance in the gut of cattle in the Alxa Desert. The gut bacterial communities in cattle from the grasslands versus the Alxa Desert were distinctive, and those from the grasslands were closely clustered. Community composition analysis revealed significant differences in species diversity and richness. Overall, the composition of the gut microbiota in Mongolian cattle is affected by geographical factors. Gut microbiota may play important roles in the geographical adaptations of Mongolian cattle.


2020 ◽  
Vol 12 (2) ◽  
pp. 629
Author(s):  
Jing Wu ◽  
Yasunori Kurosaki ◽  
Chunling Du

Aeolian dust is dependent on erosivity (i.e., wind speed) and erodibility (i.e., land surface conditions). The effect of erodibility on dust occurrence remains poorly understood. In this study, we proposed a composite erodibility index (dust occurrence ratio, DOR) and examined its interannual variation at a typical steppe site (Abaga-Qi) in Xilingol Grassland, China, during spring of 1974–2018. Variation in DOR is mainly responsible for dust occurrence (R2 = 0.80, p-value < 0.001). During 2001–2018, DOR values were notably higher than those during 1974–2000. There was also a general declining trend with fluctuations. This indicates that the land surface conditions became vulnerable to wind erosion but was gradually reversed with the implementation of projects to combat desertification in recent years. To understand the relative climatic and anthropogenic impacts on erodibility, multiple regression was conducted between DOR and influencing factors for the period of 2001–2018. Precipitation (spring, summer, and winter) and temperature (summer, autumn, and winter), together with livestock population (June) explained 82% of the variation in DOR. Sheep and goat population made the greatest contribution. Therefore, reducing the number of sheep and goat could be an effective measure to prevent dust occurrence in Xilingol Grassland.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jie Yang ◽  
Yanfen Wang ◽  
Xiaoyong Cui ◽  
Kai Xue ◽  
Yiming Zhang ◽  
...  

AbstractThe spatial variability of microorganisms in grasslands can provide important insights regarding the biogeographic patterns of microbial communities. However, information regarding the degree of overlap and partitions of microbial communities across different habitats in grasslands is limited. This study investigated the microbial communities in three distinct habitats from Xilingol steppe grassland, i.e. animal excrement, phyllosphere, and soil samples, by Illumina MiSeq sequencing. All microbial community structures, i.e. for bacteria, archaea, and fungi, were significantly distinguished according to habitat. A high number of unique microorganisms but few coexisting microorganisms were detected, suggesting that the structure of microbial communities was mainly regulated by species selection and niche differentiation. However, the sequences of those limited coexisting microorganisms among the three different habitats accounted for over 60% of the total sequences, indicating their ability to adapt to variable environments. In addition, the biotic interactions among microorganisms based on a co-occurrence network analysis highlighted the importance of Microvirga, Blastococcus, RB41, Nitrospira, and four norank members of bacteria in connecting the different microbiomes. Collectively, the microbial communities in the Xilingol steppe grassland presented strong habitat preferences with a certain degree of dispersal and colonization potential to new habitats along the animal excrement- phyllosphere-soil gradient. This study provides the first detailed comparison of microbial communities in different habitats in a single grassland, and offers new insights into the biogeographic patterns of the microbial assemblages in grasslands.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bobo Wang ◽  
Yanfen Wang ◽  
Xiaoyong Cui ◽  
Yiming Zhang ◽  
Zhisheng Yu

Abstract Background The Xilingol grassland ecosystem has abundant superficial coal reserves. Opencast coal mining and burning of coal for electricity have caused a series of environmental challenges. Biogenic generation of methane from coal possesses the potential to improve economic and environmental outcomes of clean coal utilization. However, whether the microbes inhabiting the grassland soil have the functional potential to convert coal into biomethane is still unclear. Results Microbial communities in an opencast coal mine and in grassland soil covering and surrounding this mine and their biomethane production potential were investigated by Hiseq sequencing and anaerobic cultivation. The microbial communities in covering soil showed high similarity to those in the surrounding soil, according to the pairwise weighted UniFrac distances matrix. The majority of bacterial communities in coal and soil samples belonged to the phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. The dominant bacterial genera in grassland soil included Gaiella, Solirubrobacter, Sphingomonas and Streptomyces; whereas, the most abundant genus in coal was Pseudarthrobacter. In soil, hydrogenotrophic Methanobacterium was the dominant methanogen, and this methanogen, along with acetoclastic Methanosarcina and methylotrophic Methanomassiliicoccus, was detected in coal. Network-like Venn diagram showed that an average of 28.7% of microbial communities in the samples belonged to shared genera, indicating that there is considerable microbial overlap between coal and soil samples. Potential degraders and methanogens in the soil efficiently stimulated methane formation from coal samples by the culturing-based approach. The maximum biogenic methane yields from coal degradation by the microbial community cultured from grassland soil reached 22.4 μmol after 28 day. Conclusion The potential microbial coal degraders and methanogenic archaea in grassland soil were highly diverse. Significant amounts of biomethane were generated from coal by the addition of grassland soil microbial communities. The unique species present in grassland soil may contribute to efficient methanogenic coal bioconversion. This discovery not only contributes to a better understanding of global microbial biodiversity in coal mine environments, but also makes a contribution to our knowledge of the synthetic microbiology with regard to effective methanogenic microbial consortia for coal degradation.


2018 ◽  
Vol 88 ◽  
pp. 372-383 ◽  
Author(s):  
Dengkai Chi ◽  
Hong Wang ◽  
Xiaobing Li ◽  
Honghai Liu ◽  
Xiaohui Li

Sign in / Sign up

Export Citation Format

Share Document