Image encryption algorithm based on fractional-order Chen chaotic system

2013 ◽  
Vol 33 (4) ◽  
pp. 1043-1046 ◽  
Author(s):  
Yaqing WANG ◽  
Shangbo ZHOU
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050233
Author(s):  
Guodong Ye ◽  
Kaixin Jiao ◽  
Huishan Wu ◽  
Chen Pan ◽  
Xiaoling Huang

Herein, an asymmetric image encryption algorithm based on RSA cryptosystem and a fractional-order chaotic system is proposed. Its security depends on RSA algorithm. First, a pair of public and private keys is generated by RSA algorithm. Subsequently, a random message shown as plaintext key information is encrypted by the public key and RSA to achieve ciphertext key information. Next, a new transformation map is established to generate the initial key according to the ciphertext key information. Subsequently, the initial key is substituted into a fractional hyperchaotic system equation to calculate the keystream. Finally, permutation and diffusion operations are employed to encrypt a plain image to obtain the final cipher image. In the proposed algorithm, different keys for encryption and decryption are designed under an asymmetric architecture. The RSA algorithm and fractional chaotic system are combined to encrypt images; in particular, a fast algorithm for computing power multiplication is employed, which significantly improves the encryption effect and enhances the security. Simulation results show that the proposed algorithm is effective and applicable to image protection.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6838
Author(s):  
Fudong Ge ◽  
Zufa Qin ◽  
YangQuan Chen

The purpose of this paper is to explore a novel image encryption algorithm that is developed by combining the fractional-order Chua’s system and the 1D time-fractional diffusion system of order α∈(0,1]. To this end, we first discuss basic properties of the fractional-order Chua’s system and the 1D time-fractional diffusion system. After these, a new spatiotemporal chaos-based cryptosystem is proposed by designing the chaotic sequence of the fractional-order Chua’s system as the initial condition and the boundary conditions of the studied time-fractional diffusion system. It is shown that the proposed image encryption algorithm can gain excellent encryption performance with the properties of larger secret key space, higher sensitivity to initial-boundary conditions, better random-like sequence and faster encryption speed. Efficiency and reliability of the given encryption algorithm are finally illustrated by a computer experiment with detailed security analysis.


2021 ◽  
Author(s):  
Hegui Zhu ◽  
Jiangxia Ge ◽  
Wentao Qi ◽  
Xiangde Zhang ◽  
Xiaoxiong Lu

Abstract Owning to complex properties of ergodicity, non-periodic ability and sensitivity to initial states, chaotic systems are widely used in cryptography. In this paper, we propose a sinusoidal--polynomial composite chaotic system (SPCCS), and prove that it satisfies Devaney's definition of chaos: the sensitivity to initial conditions, topological transitivity and density of periodic points. The experimental results show that the SPCCS has better unpredictability and more complex chaotic behavior than the classical chaotic maps. Furthermore, we provide a new image encryption algorithm combining pixel segmentation operation, block chaotic matrix confusing operation, and pixel diffusion operation with the SPCCS. Detailed simulation results verify effectiveness of the proposed image encryption algorithm.


Sign in / Sign up

Export Citation Format

Share Document