Review on the optimal placement, sizing and control of an energy storage system in the distribution network

2019 ◽  
Vol 21 ◽  
pp. 489-504 ◽  
Author(s):  
Ling Ai Wong ◽  
Vigna K. Ramachandaramurthy ◽  
Phil Taylor ◽  
J.B. Ekanayake ◽  
Sara L. Walker ◽  
...  
Author(s):  
Santoshkumar Hampannavar ◽  
Suresh Chavhan ◽  
Udaykumar Yaragatti ◽  
Anant Naik

Abstract Electric Vehicles (EV) can be connected to the grid for power transaction and also serve as distributed resource (DR) or distributed energy storage system (DESS). The concept of connecting group of EVs or gridable EVs (GEV) to the grid is called Vehicle-to-Grid (V2G). V2G is a prominent energy storage system as it is flexible and can be used to support the grid requirements in order to meet the time varying load demand. Optimal placement of GEV aggregation in power distribution network is very challenging and helps in maintaining stability of the power system for a shorter duration of time. In this paper, algorithm is developed for estimating parameters like Ploss, Qloss, Vpu based on past history and wireless access support for Control and Monitoring Unit (CMU) to aggregator agent communication is proposed using Long Term Evolution (LTE) protocol. The load flow studies are carried using MiPOWER software in order to obtain the optimal location for the placement of GEV aggregation in power distribution network. LTE physical layer is modeled using MATLAB/SIMULINK and the performance is analyzed using bit error rate (BER) v/s signal to noise ratio (SNR) curves.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Sign in / Sign up

Export Citation Format

Share Document