THEORETICAL AND FINITE ELEMENT ANALYSIS TO DETERMINE CONTACT PRESSURE, VONMISSES STRESSES AND WEAR IN CAM AND FOLLOWER FOR VARIOUS CAM ROTATIONAL ANGLES IN IC ENGINE

2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Jayakumar K ◽  
Aldrin Raj J ◽  
Somesh Subramanian S

The contact between the cam and follower that exists in the valve strain system of IC engine influences wear. The dynamic analysis of cam and follower system in carried to find the normal compressive force for various cam rotational angles. Based on this compressive force on the cam, the hertz contact stresses and surface wear are calculated theoretically. Finite element analysis was carried out in the three critical portions of the cam such as cam nose region, cam tangent region and cam base circle region to compare the results. The results showed that cam rotational angle directly affects the contact pressure. The max contact pressure occurs in the nose end of the cam. The results showed that principle stress and wear also increases with cam rotational angle

Author(s):  
Dinesh Shinde ◽  
Mukesh Bulsara ◽  
Jeet Patil

Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kenji Kitamura ◽  
Masanori Fujii ◽  
Miho Iwamoto ◽  
Satoshi Ikemura ◽  
Satoshi Hamai ◽  
...  

Abstract Background The ideal acetabular position for optimizing hip joint biomechanics in periacetabular osteotomy (PAO) remains unclear. We aimed to determine the relationship between acetabular correction in the coronal plane and joint contact pressure (CP) and identify morphological factors associated with residual abnormal CP after correction. Methods Using CT images from 44 patients with hip dysplasia, we performed three patterns of virtual PAOs on patient-specific 3D hip models; the acetabulum was rotated laterally to the lateral center-edge angles (LCEA) of 30°, 35°, and 40°. Finite-element analysis was used to calculate the CP of the acetabular cartilage during a single-leg stance. Results Coronal correction to the LCEA of 30° decreased the median maximum CP 0.5-fold compared to preoperatively (p <  0.001). Additional correction to the LCEA of 40° further decreased CP in 15 hips (34%) but conversely increased CP in 29 hips (66%). The increase in CP was associated with greater preoperative extrusion index (p = 0.030) and roundness index (p = 0.038). Overall, virtual PAO failed to normalize CP in 11 hips (25%), and a small anterior wall index (p = 0.049) and a large roundness index (p = 0.003) were associated with residual abnormal CP. Conclusions The degree of acetabular correction in the coronal plane where CP is minimized varied among patients. Coronal plane correction alone failed to normalize CP in 25% of patients in this study. In patients with an anterior acetabular deficiency (anterior wall index < 0.21) and an aspherical femoral head (roundness index > 53.2%), coronal plane correction alone may not normalize CP. Further studies are needed to clarify the effectiveness of multiplanar correction, including in the sagittal and axial planes, in optimizing the hip joint’s contact mechanics.


Author(s):  
Chris Alexander ◽  
Wade Armer ◽  
Stuart Harbert

KOCH Heat Transfer Company contracted Stress Engineering Services, Inc. to perform a design/parameter study of a return bonnet used in hairpin heat exchangers that employs an elliptical flange design. The return bonnet is an important component of the heat exchanger as it can be removed to permit inspection of the heat exchanger tubes. The return bonnet is bolted to the hairpin leg flange. To maintain sealing integrity a gasket is placed between the return bonnet flange and the hairpin leg flange. The sealing efficiency of two return bonnet sizes (24-inch and 30-inch) was investigated in this study using finite element analysis. The sealing efficiency is an indication of how the contact pressure changes circumferentially around the gasket and is calculated by dividing the local contact pressure by the maximum contact pressure calculated in the gasket for each respective design. The study assessed the effects of geometric changes to the mating flanges. Using an iterative design process using finite element analysis, the elliptical flanges were optimized to maximize sealing efficiency. Upon completion of the study, the manufacturer successfully employed the modifications as evidenced with multiple successful hydrotests.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750011 ◽  
Author(s):  
XUAN ZHANG ◽  
LING WANG ◽  
XIFENG PENG ◽  
DICHEN LI ◽  
JIANKANG HE ◽  
...  

Asphericity and out-of-roundness are generally used to evaluate the manufacturing quality of ultra-high molecular weight polyethylene (UHMWPE) cup inner surfaces, which can potentially affect initial clinical wear and contribute to osteolysis of total hip arthroplasty. This study measured the location and magnitude of asphericity and the out-of-roundness value for four UHMWPE cups in a single set, and then investigated the effects of the asphericity on the contact mechanics of UHMWPE cups. A co-ordinate measuring machine (CMM) was used for the surface measurement and finite element analysis (FEA) was adopted for contact mechanics study. The results demonstrated that the asphericity varied between cups with the maximum value as 0.088[Formula: see text][Formula: see text][Formula: see text]0.004[Formula: see text]mm. Although such a value met the ISO specification, large difference of volume appeared for the asphericity above 0.060[Formula: see text]mm. Actual surface profile accounting for the asphericity was found to affect the value of contact pressure and contact area by around 12%. The inferior asphericity resulted in a nonsmoothly distributed contact pressure, which had a negative effect on the contact mechanics of UHMWPE cups and the edge loading was predicted to occur for the sample with a large asphericity. In conclusion, the asphericity of UHMWPE cup could affect the contact mechanics of the articular bearings and may subsequently contribute to initial wear during bedding-in phase.


Sign in / Sign up

Export Citation Format

Share Document