scholarly journals Numerical Solution to Unsteady One-Dimensional Convection-Diffusion Problems Using Compact Difference Schemes Combined with Runge-Kutta Methods

2021 ◽  
pp. 399-408
Author(s):  
Zhenwei Zhu ◽  
Junjie Chen

The convection-diffusion equation is of primary importance in understanding transport phenomena within a physical system. However, the currently available methods for solving unsteady convection-diffusion problems are generally not able to offer excellent accuracy in both time and space variables. A procedure was given in detail to solve the unsteady one-dimensional convection-diffusion equation through a combination of Runge-Kutta methods and compact difference schemes. The combination method has fourth-order accuracy in both time and space variables. Numerical experiments were conducted and the results were compared with those obtained by the Crank-Nicolson method in order to check the accuracy of the combination method. The analysis results indicated that the combination method is numerically stable at low wave numbers and small CFL numbers. The combination method has higher accuracy than the Crank-Nicolson method.

2017 ◽  
Vol 150 ◽  
pp. 95-114 ◽  
Author(s):  
V.K. Suman ◽  
Tapan K. Sengupta ◽  
C. Jyothi Durga Prasad ◽  
K. Surya Mohan ◽  
Deepanshu Sanwalia

2008 ◽  
Vol 19 (11) ◽  
pp. 1737-1751 ◽  
Author(s):  
GAIL GUTIERREZ ◽  
WHADY FLOREZ

This work presents a performance comparison of several meshless RBF formulations for convection-diffusion equation with moderate-to-high Peclet number regimes. For the solution of convection-diffusion problems, several comparisons between global (full-domain) meshless RBF methods and mesh-based methods have been presented in the literature. However, in depth studies between new local RBF collocation methods and full-domain symmetric RBF collocation methods are not reported yet. The RBF formulations included: global symmetric method, symmetric double boundary collocation method, additive Schwarz domain decomposition method (DDM) when it is incorporated into two anterior approaches, and local single and double collocation methods. It can be found that the accuracy of solutions deteriorates as Pe increases, if no special treatment is used. From the numerical tests, it seems that the local methods, especially the derived double collocation technique incorporating PDE operator, are more effective than full domain approaches even with iterative DDM in solving moderate-to-high Pe convection-diffusion problems subject to mixed boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document