Dual Functional Interactions of Substance P and Opioids in Nociceptive Transmission: Review and Reconciliation

Analgesia ◽  
1998 ◽  
Vol 3 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Iwona Maszczynska ◽  
Andrzej W. Lipkowski ◽  
Daniel B. Carr ◽  
Richard M. Kream
1995 ◽  
Vol 82 (1) ◽  
pp. 166-173 ◽  
Author(s):  
Yue-Ming Li ◽  
Douglas E. Wingrove ◽  
Phon H. Too ◽  
Margarita Marnerakis ◽  
Evelyn R. Stimson ◽  
...  

Background During spinal and epidural anesthesia, local anesthetics reach concentrations in cerebrospinal fluid and spinal cord tissues at which their actions may extend beyond the classic blockade of sodium channels. This study examines the effects of several clinical and experimental local anesthetics on the binding and actions of a peptide neurotransmitter, substance P, known to be important in nociceptive transmission in the dorsal horn. Methods The binding of radiolabeled (Bolton-Hunter modified) substance P was studied in chick brain membranes in the presence of local anesthetics. The increase in intracellular calcium [Ca2+]in evoked by substance P was measured by the fluorescent indicator fura-2 loaded in a murine cell line expressing substance P (NK1) receptors. Cells were preincubated with bupivacaine before and during the transient addition of substance P. Results Both substance P binding and Ca2+ increase were inhibited half-maximally by approximately 1 mM bupivacaine at pH 7.5, whereas tetracaine, lidocaine, and benzocaine were slightly less potent at inhibiting binding. Concentration-dependent substance P-binding studies showed that bupivacaine's inhibition was not competitive. Inhibition of substance P binding by bupivacaine increased with increasing pH, but the protonated species appears to have some inhibitory activity, and quaternary lidocaine also inhibited binding. There was no stereoselectively to the binding inhibition. Conclusions Because millimolar concentrations of local anesthetics are within the range measured in spinal cord during intrathecal and epidural procedures, these results are consistent with a direct action of local anesthetics on tachykinin-mediated neurotransmission during regional anesthesia.


1998 ◽  
Vol 5 (5-6) ◽  
pp. 395-398 ◽  
Author(s):  
Iwona Maszczynska ◽  
Andrzej W. Lipkowski ◽  
Daniel B. Carr ◽  
Richard M. Kream

Hypertension ◽  
1991 ◽  
Vol 17 (6_pt_2) ◽  
pp. 1121-1126 ◽  
Author(s):  
K L Barnes ◽  
D I Diz ◽  
C M Ferrario

Author(s):  
E.Y. Chi ◽  
M.L. Su ◽  
Y.T. Tien ◽  
W.R. Henderson

Recent attention has been directed to the interaction of the nerve and immune systems. The neuropeptide substance P, a tachykinnin which is a neurotransmitter in the central and peripheral nervous systems produces tissue swelling, augemntation of intersitial fibrin deposition and leukocyte infiltration after intracutaneous injection. There is a direct correlation reported between the extent of mast cell degranulation at the sites of injection and the tissue swelling or granulocyte infiltration. It has previously been demonstrated that antidromic electrical stimulation of sensory nerves induces degranulation of cutaneous mast cells, cutaneous vasodilation and augmented vascular permeability. Morphological studies have documented a close anatiomical association between mast cells and nonmyelinated nerves, that contain substance P and other neuropeptides. However, the presence of mast cells within nerve fasicles has not been previously examined ultrastructurally. In this study, we examined ultrastructurally the distribution of mast cells in the nerve fiber bundles located in the muscular connective tissue of rat tongues (n=20).


1997 ◽  
Vol 27 (4) ◽  
pp. 372-378 ◽  
Author(s):  
H. FUJISHIMA ◽  
M. TAKEYAMA ◽  
T. TAKEUCHI ◽  
I. SAITO ◽  
K. TSUBOTA

Sign in / Sign up

Export Citation Format

Share Document