Development of Effervescent Tablets of Alendronate Sodium with Improved Intestinal Permeation

Author(s):  
Prasad Vure ◽  
Sundeep Chaurasia

The aim of the present study is to develop effervescent tablets of alendronate sodium to improve their intestinal permeability to treat osteoporosis. Effervescent tablets of alendronate sodium were developed with different ratios of acid to alkaline components having a pH of about 3 to about 6.5. The tablets were prepared by direct compression method. The physical mixture blend was evaluated for angle of repose, true density, bulk density, compressibility index. The formulated tablets were subjected to thickness, weight variation, hardness, friability, drug content and pH. The in vitro dissolution studies were carried out using the USP Type 2 apparatus. Formulation F14 was considered as optimized formulation because it shows drug release pattern higher than that of the other formulations and conventional marketed formulation. Ex vivo permeation studies were performed for the optimized formulation (F14) and that of the conventional marketed formulation. The drug release of the formulation (F14) was higher than the marketed formulation. Accelerated stability studies of the optimized formulation indicated that there were no signs of visually distinguishable changes, drug content and in vitro dispersion time. Thus, an increase in drug release may enhance absorption, in turn may enhance bioavailability.       

Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


Author(s):  
P. V. Swamy ◽  
Laeeq Farhana ◽  
S. B. Shirsand ◽  
Md.Younus Ali ◽  
Ashokgoud Patil

Carvedilol (non-cardio selective b-blocker) is an antihypertensive used in management of hypertension, angina pectoris and heart failure.  But its oral bioavailability is about 25-35% only due to significant degree of first pass metabolism.  It has gastrointestinal side effects such as diarrhea, gastric pain and irritation.  Hence, rectal suppositories of carvedilol were developed by using different water-soluble polymeric bases like gelatin and agar-agar using propylene glycol as plasticizer. The gelatin suppositories were disintegrating/dissolving type while gelatin–agar based suppositories were non-disintegrating/non-melting. All the formulations were evaluated for various physical parameters like weight variation,  drug content uniformity, liquefaction time, micro-melting range, in vitro dissolution, short-term stability and drug-excipient interaction (FTIR).  The mechanism of drug release was diffusion controlled and follows first order kinetics in majority of cases. The results suggested that when gelatin is replaced up to 25% w/w with agar, liquefaction time and drug release were not appreciably affected; higher proportions of agar exhibited incomplete and slow release.  Stability studies conducted at 25±3º C and 60±5% relative humidity for three months indicated that the formulations were stable in the drug-content and in vitro drug release rate (p<0.05).


Author(s):  
Vijaya Kumar B ◽  
Prasad G ◽  
Ganesh B ◽  
Swathi C ◽  
Rashmi A ◽  
...  

The objective of the present research was to develop a Bilayer tablet of guaifenesin (GBT) using superdisintegrant MCC and sodium starch glycolate for the fast release layer and metalose 90 SH and carbopol 934 for the sustaining layer. The guaifenesin SR granules of different formulation were evaluated for bulk density, tapped density, angle of repose, Carr’s index and Hausners ratio and results were found to be 0.460 ± 0.12 to 0.515 ± 0.03 gm/cm3 , 0.550 ±0.03 to 0.590 ±0.04 gm/cm3 , 19 ±0.01 to 26 ± 0.23, 13.72 ± 0.03 to 19.56 ± 0.04 & 1.137 to 1.196, respectively. The prepared bilayer tablets were evaluated for weight variation, hardness, friability, drug content and in vitro drug release. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 h from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. Stability studies conducted for optimized formulation did not show any change in physical appearance, drug content, matrix integrity and in vitro drug release. The results of the present study clearly indicated that GBT was a stable dosage form and a promising potential of the guaifenesin bilayer system as an alternative to the conventional dosage forms


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


Author(s):  
Anusha M ◽  
S T Bhagawati ◽  
K Manjunath

Objective: The aim of the present study was design, develop and to evaluate a model of floating sustained release pellets formulations for Omeprazole by extrusion and spheronization technique. Methods: Omeprazole at different drug to polymer ratios were prepared by extrusion and spheronization technique and the release rate of the drug from the pellets was studied. Further, the in-vitro release studies of pellets were carried out in 0.1N HCL for 12 hours. Prepared pellets were subjected to characterization by different techniques such as loose bulk density, tapped bulk density, compressibility index and angle of repose. To optimize the formulation on the basis of acceptable pellet properties friability, drug content, moisture content, and loss on drying and in-vitro drug release tests were done. In addition, the compatibility studies were performed by using FTIR and DSC. Results: These above studies indicated that the drug release can be modulated by varying the concentration of the polymer. The resulting formulation produced robust pellets with acceptable drug content and low friability. Further, release data was fitted to various mathematical models such as, Higuchi, Korsmeyer-Peppas, First-order, and Zero-order to evaluate the kinetics and mechanism of the drug release. Kinetic modeling of in-vitro dissolution profiles revealed the release mechanism ranges from Quasi-Fickian transport to Anomalous (non-Fickian transport), which was only dependent on the type and amount of polymer used. The drug release of the optimized formulation (F5) follows Zero order kinetics and the mechanism was found to be diffusion controlled. The FTIR and DSC studies reveal that there is no interaction between the drug and the polymer/excipients mixture. Keywords:  Floating, Ethyl cellulose, HPMC, Pellets, Omeprazole.


2015 ◽  
Vol 14 (9) ◽  
pp. 1557-1563
Author(s):  
M Zaman ◽  
RM Sarfraz ◽  
S Adnan ◽  
A Mahmood ◽  
M Hanif ◽  
...  

Purpose: To formulate and characterize once daily controlled release tablet of loxoprofen sodium.Methods: Eudragit RS-100, hydroxylpropyl methylcellulose (HPMC) and pectin were used as release retarding polymers. All the formulations were prepared by direct compression method. Various precompression studies were carried out to determine Hausner’s ratio, Carr’s index, angle of repose, bulk density and tapped density Differential scanning calorimetry (DSC) studies and also post-compression studies to evaluate hardness, friability, weight variation, drug content, in-vitro drug release were conducted on the tablets. The drug release data were subjected to kinetic models, including zero order, first order, Hixon Crowell, Higuchi and Korsmeyer-Peppas.Results: Compressibility index (7.6 ± 1.32 - 12.5 ± 1.43%), Hausner’s ratio (1.08 ± 0.04 - 1.14 ± 0.03), angle of repose (27.78 ± 0.47 - 30.49 ± 0.46°), hardness (6.25 ± 0.27 - 7.21±0.21 kg/cm2), friability (0.14 ± 0.06 - 0.28 ± 0.0 %), weight variation (249.5 ± 2.09 - 251.35 ± 2.41 mg) and drug content  (97.30 ± 0.28 - 103.70 ± 0.31 %) were within generally accepted limits for the pre-and post-compression formulations, respectively. The tablets having the maximum amount of among the three polymers tested as matrix materials, HPMC, represented by F3 tablets, exerted better sustained release properties after 12 h. Release pattern was more of Fickian diffusion followed by Higuchi mechanism.Conclusion: The release of the loxoprofen sodium was optimized up to 12 h.Keywords: Loxoprofen, Sustained release, hydroxypropyl methylcelluose, Pectin, Eudragit, Matrix tablets


Sign in / Sign up

Export Citation Format

Share Document