Design and Evaluation of Rectal Suppositories of Carvedilol

Author(s):  
P. V. Swamy ◽  
Laeeq Farhana ◽  
S. B. Shirsand ◽  
Md.Younus Ali ◽  
Ashokgoud Patil

Carvedilol (non-cardio selective b-blocker) is an antihypertensive used in management of hypertension, angina pectoris and heart failure.  But its oral bioavailability is about 25-35% only due to significant degree of first pass metabolism.  It has gastrointestinal side effects such as diarrhea, gastric pain and irritation.  Hence, rectal suppositories of carvedilol were developed by using different water-soluble polymeric bases like gelatin and agar-agar using propylene glycol as plasticizer. The gelatin suppositories were disintegrating/dissolving type while gelatin–agar based suppositories were non-disintegrating/non-melting. All the formulations were evaluated for various physical parameters like weight variation,  drug content uniformity, liquefaction time, micro-melting range, in vitro dissolution, short-term stability and drug-excipient interaction (FTIR).  The mechanism of drug release was diffusion controlled and follows first order kinetics in majority of cases. The results suggested that when gelatin is replaced up to 25% w/w with agar, liquefaction time and drug release were not appreciably affected; higher proportions of agar exhibited incomplete and slow release.  Stability studies conducted at 25±3º C and 60±5% relative humidity for three months indicated that the formulations were stable in the drug-content and in vitro drug release rate (p<0.05).

Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
V. J. Kapure ◽  
V. V. Pande ◽  
P. K. Deshmukh

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT). The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR) analysis, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.


Author(s):  
Pranali Shivaji Salunkhe

ABSTRACTGastroretentive floating drug delivery system is utilised to target drug release in the stomach or to the upper part of intestine. Lansoprazole is proton pump inhibitor intended for oral administration used as antiulcer agent. The present investigation involved formulation and evaluation of Gastroretentive floating tablets of Lansoprazole for prolongation of gastric residence time with a view to deliver the drug at sustained and controlled manner in gastrointestinal tract. The tablets of Lansoprazole were prepared by direct compression method using gas generating agent and different polymer combinations (HPMCK4M, HPMC K100M, Psyllium husk) . The prepared tablets of Lansoprazole were evaluated for hardness, thickness, friability, weight variation, drug content uniformity, buoyancy lag time, total floating time, swelling index, in-vitro dissolution study. The varying concentration of gas generating agent and polymers were found to affect on in-vitro drug release, floating lag time and swelling index. In vitro drug release of floating Gastroretentive tablet of Lansoprazole shown that the formulation F2 was found to be the best formulation as it releases 97.9% Lansoprazole in a controlled manner for extended period of time (upto 12 hrs.)Keywords: Lansoprazole, Gastroretentive, floating tablet, total floating time.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
MEGHANA RAYKAR ◽  
MALARKODI VELRAJ

Objective: This study aims to Formulate Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate with the increase in bioavailability and patient compliance. Methods: Mouth Dissolving Tablets (MDTs) of Tofacitinib Citrate were developed by full factorial design at 32levelsand prepared by direct compression method using super integrants like sodium starch glycolate, Ludiflash. The tablets were compressed into compacts on a 10 station tablet machine. The bulk drug was characterised by determining, MP, Solubility, pH and FTIR spectra. Results: The weight variation, hardness and diameter, thickness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies, and stability study, tablet thickness, weight variation and drug content post compression parameters remained consistent and reproducible. All the formulations showed, almost 100 percent of drug release within 75 min. Formulations F1, F2 and F3 were prepared with 5 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F1<F2<F3. Formulations F4, F5 and F6 were prepared with 10 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F4<F5<F6. Formulations F7, F8 and F9 were prepared with 15 mg of SSG and 20 mg, 30 mg, and 40 mg Ludiflash which shows % release of drug in the order of F7<F8<F9. Conclusion: It is concluded that the amount of superdisintegrants decreases disintegration time of tablets, decreases wetting time, increases the cumulative % drug release causes better absorption.


Author(s):  
C.C. Patil ◽  
J. Vekatesh ◽  
S. R Karajgi ◽  
Vijapure Vitthal ◽  
Ashwini G. ◽  
...  

The aim of this project was to develop sustained release matrix tablets of Repaglinide. Sustained release matrix tablets of Repaglinide were prepared by the wet granulation method using polymers like Hydroxy propyl methyl cellulose, Microcrystalline cellulose, Eudragit RS-100 in different ratios. The matrix tablets of Repaglinide were evaluated for hardness, weight variation, friability, drug content uniformity, and in-vitro drug release. In order to determine the drug release mechanisms and kinetics, the data was subjected to zero order, first order, and higuchi and peppas diffusion model. Twelve batches of sustained release matrix tablets of Repaglinide were developed. Among these formulations F4, F8 and F12 formulation showed satisfactory physicochemical properties and drug content uniformity and sustained release of drug for 12 hours with maximum release of 86.95%, 84.91% and 84.91%. The optimized formulations were characterized for Differential scanning calorimetric analysis; Fourier transforms infrared spectroscopy and scanning electron microscopic studies. IR spectroscopic studies indicated that there were no drug-excipient interactions. The prepared sustained release matrix tablets of Repaglinide were successfully developed and evaluated.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Author(s):  
Ankit Acharya ◽  
Mohammed Gulzar Ahmed ◽  
Ravi Chaudhari ◽  
Renukaradhya Chitti

Divalproex sodium is considered as the most important antiepileptic drug and widely used for treatment of epilepsy and bi-polar disorders and prophylaxis of migraine. The present work has been done to formulate bi-layered tablet of Divalproex sodium containing immediate release layer and sustained release layer. The FTIR study revealed that there was no interaction between drug and polymer and combination. Both layers were prepared by wet granulation technique as poor flow property exhibited by pure drug. The immediate release layer was formulated by using superdisintegrants and evaluated for physical parameters, disintegration time and in vitro drug release. The optimized immediate release layer (IF6) with highest in vitro release of 98.11 was selected for bi-layered tablet formulation. HPMC K4M and HPMC K100M polymer were used to retard the drug release from sustained release layer in different proportion and combination and evaluated for physical parameter along with in vitro drug release studies. The optimized sustained release layer (SF8) which extends the Divalproex sodium release more than 18 hrs was selected. Finally, bi-layered tablets were prepared by double compression of selected sustained release layer and immediate release layer of Divalproex sodium. The tablets were evaluated for hardness, thickness, weight variation, friability, drug content uniformity and in vitro drug release. All the physical parameters were in acceptable limit of pharmacopeial specification. The stability studies, shown the bi-layer tablet was stable at 40oC / 75% RH for a period of 3 months.  


Author(s):  
Prasad Vure ◽  
Sundeep Chaurasia

The aim of the present study is to develop effervescent tablets of alendronate sodium to improve their intestinal permeability to treat osteoporosis. Effervescent tablets of alendronate sodium were developed with different ratios of acid to alkaline components having a pH of about 3 to about 6.5. The tablets were prepared by direct compression method. The physical mixture blend was evaluated for angle of repose, true density, bulk density, compressibility index. The formulated tablets were subjected to thickness, weight variation, hardness, friability, drug content and pH. The in vitro dissolution studies were carried out using the USP Type 2 apparatus. Formulation F14 was considered as optimized formulation because it shows drug release pattern higher than that of the other formulations and conventional marketed formulation. Ex vivo permeation studies were performed for the optimized formulation (F14) and that of the conventional marketed formulation. The drug release of the formulation (F14) was higher than the marketed formulation. Accelerated stability studies of the optimized formulation indicated that there were no signs of visually distinguishable changes, drug content and in vitro dispersion time. Thus, an increase in drug release may enhance absorption, in turn may enhance bioavailability.       


Sign in / Sign up

Export Citation Format

Share Document