scholarly journals DEVELOPMENT, FORMULATION AND EVALUATION OF MECLOFENAMATE FAST DISSOLVING TABLETS

2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.

Author(s):  
Dr. Dilip Agrawal ◽  
Dr. Rakesh Goyal ◽  
Dr. Mukesh Bansal ◽  
Ashok Kumar Sharma ◽  
Mohit Khandelwal

The demands for fast dissolving tablets have received ever increasing day by day during the last decade. In the present projected study, the effect of natural Super disintegrants was compared with synthetic Super disintegrants and conventional Super disintegrants in the of fast dissolving tablet formulation of Meclofenamate Sodium. Meclofenamate sodium NSAID is used for the treatment of mild to moderate pain in various conditions like (e.g., dental pain, osteoarthritis) and to decrease pain and blood loss during menstrual periods. It is also used for other treatments like reducing pain, swelling, and joint stiffness caused with rheumatoid arthritis. In the present work 9 formulations of FDT (Fast dissolving tablet) of Meclofenamate Sodium were prepared by using Super disintegrants was evaluated and compiles with the official parameters and specifications. Various formulations were prepared using four different super disintegrants namely natural super disintegrant Banana Powder, sodium starch glycolate, crosscarmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose, bulk density, tapped density, and then tablet evaluated with various post-compression parameters like thickness, drug content, hardness, weight variation, wetting time, friability, disintegration time, dissolution time, drug release study. Formulation F2 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation F2 showed 98.55% drug release at the end of 3 minutes. The best formulations among these were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


2015 ◽  
Vol 3 (01) ◽  
pp. 11-17
Author(s):  
Krishnamurthy A. Kamalapurkar ◽  
Mahesh P. Chitali ◽  
Revansidh R. Pujari

The objective of this study was formulation development and evaluation of Oxcarbazepine Fast Dissolving Tablets (FDTs) prepared by sublimation technique where different sublimating agents like camphor and menthol were used with L-HPC and crospovidone as a superdisintegrants. Oxcarbazepine is an anticonvulsant drug used in the treatment of epilepsy and bipolar disorder. Each sublimating agent was used in concentration of 10-20 mg per tablet. Tablets were first prepared and then kept in hot air oven for sublimation. The prepared FDTs were evaluated for weight variation, thickness, drug content, friability, hardness, wetting time, water absorption ratio, in-vitro dispersion time, in-vitro disintegration time and in-vitro dissolution time. All formulations showed disintegration time ranging from 8 to 332sec. Optimized batch (SA6) was selected for the stability studies. The results of stability studies revealed that there was no remarkable difference in the tested parameters of promising formulation after storage for 3 months at 400 c ± 20 c 75% ± 5%RH and at room temperature 65% ± 5%RH as compared to initial results All the prepared formulae complied with Pharmacopoeia requirements of drug contents.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Sarika S. Malode ◽  
Milind P. Wagh

The objective of present work was to develop taste masked orodispersible tablets of mirabegron. Mirabegron is beta 3 adrenoceptor agonist used to treat overactive bladder. Overactive bladder (OAB) is defined as a symptom syndrome showing feeling of urgency to urinate, typically accompanied by frequent daytime and nocturnal urination, in the absence of proven infection or other obvious pathology. Over active bladders are generally common in geriatrics. Moreover, this drug has a very strong bitter taste. Frequent dosing requires frequent water intake, which further aggregates the condition of over active bladder and bitter taste of drug affects patient compliance. Hence a need arises to mask the bitter taste for development of an ODT which does not require consuming water with every dosage. In this work, the bitter taste of mirabegron was masked by forming a complex with an ion exchange resin tulsion 344. The drug resin complexation process was optimized for resin activation, drug: resin ratio, soaking time and stirring time. In –vitro release studies revealed complete drug elution from the complex within 10 minutes in pH 1.2 buffer. The taste-masked complex was then formulated into palatable orodispersible tablets using a direct compression approach by use of superdisintegrants to achieve a rapid disintegration. The tablets were evaluated for weight variation, hardness, friability, drug content, wetting time, In- vivo disintegration time and in-vitro dissolution time.


Author(s):  
Mohammed Sarfaraz ◽  
Surendra Kumar Sharma

ABSTRACTObjective: The main objective of this research was to formulate Fast disintegrating tablets of Flurbiprofen incorporating superdisintegrants, isolated from natural sources like Plantago ovata (PO) seeds, Lepidium sativum (LS) seeds and agar-agar.Methods: Superdisintegrants were isolated from their natural sources using reported methods. Swelling index and hydration capacity was determined for the natural superdisintegrants to know their disintegration capacity. The tablet formulations were designed using isolated natural superdisintegrants. The powder blends were evaluated for pre-compressional parameters like angle of repose, bulk density, tapped density, carr’s index, and hausner’s ratio. Fast disintegrating tablets were prepared by direct compression method. The compressed tablets were characterized for post compression parameters.Results: All formulations had hardness, friability, weight variation and drug content within the pharmacopoeial limits. The wetting time was 84 to 254 sec, in vitro disintegration time was between 59.2 to 221 sec, and in-vitro drug release was as low as 11.80% (LS1) to a maximum of 98.99% (PO4) after 4 min of study. Among all, optimized formulation was PO4, as it showed good wetting time (84 sec), fastest disintegration time (59.2 sec), dispersion time (135 sec) and drug release of 98.99.% within 4 min.Conclusion: Flurbiprofen FDT’s were successfully developed using isolated natural disintegrants. The natural disintegrants isolated showed promising results and can prove as effective alternative for synthetic disintegrants.


Author(s):  
Asfiya Fatima ◽  
Mamatha Tirunagari ◽  
Divya Theja Chilekampalli

The main objective of the present study was to prepare and evaluate the instant release oral thin films of Flunarizine, in order to enhance the bioavailability of the drug and to provide rapid onset of action thereby improving patient compliance. The instant release oral thin films of Flunarizine were prepared by solvent casting method using film forming polymer like Hydroxypropyl Methylcellulose E-15. The film was evaluated for various physicochemical parameters that include thickness, weight variation, folding endurance, tensile strength, drug content and in vitro drug release studies. No differences were observed in in vitro dissolution of drug from the formulated film F1-F9 as the film instantly gets wet by dissolution medium. The drug release for F5 formulations was about 98.1%. The accelerated stability studies for the optimized film formulations F5 were performed that indicates that the formulated instant release oral thin films were unaffected after initial and 3 months storage under accelerated conditions.


Author(s):  
MANIKIRAN S. S. ◽  
NAGAM SANTHI PRIYA ◽  
B. AUBINE MOLLY ◽  
LAKSHMI PRASANTHI NORI

Objective: This research focused on the design of fast dissolving herbal film of Eclipta Prostrate leaves extract for mouth ulcers. Methods: The extract of Eclipta Prostrata leaves was formulated as films by solvent casting method using various polymers viz., HPMC E5, HPMC E15, sodium alginate and PVA. The films were designed by using propylene glycol as a plasticizer, SSG as super disintegrate and honey as a sweetener. Furthermore, the films were evaluated for thickness, folding endurance, weight variation, % elongation, surface pH, % moisture uptake, % moisture loss, disintegration and in vitro drug release study. Results: The revealed that all the films were good in appearance and had a smooth texture. Out of all ten formulations, F3 and F5 disintegrated rapidly with a disintegration time of 27 and 32 seconds. The drug release studies revealed that all the formulations had a good release profile, but the F3 formulation showed rapid release i.e. 83.57% in 4 min. The stability studies revealed that the formulations F3 and F5 were found good with non-tackiness, easily separable and disintegrated at 29 and 33 sec respectively with no appearance and drug release. Conclusion: The research revealed that Eclipta prostrate leaves extract can be formulated into oral films for the treatment of mouth ulcers with improved bioavailability and expected patient compliance.


Sign in / Sign up

Export Citation Format

Share Document