scholarly journals Pollen limitation and the contribution of autonomous selfing to fruit and seed set in a rewarding orchid

2015 ◽  
Vol 102 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Hans Jacquemyn ◽  
Rein Brys
1998 ◽  
Vol 76 (5) ◽  
pp. 818-828 ◽  
Author(s):  
Faye L Thompson ◽  
Luise A Hermanutz ◽  
David J Innes

Menyanthes trifoliata L. is a distylous, clonal aquatic macrophyte found in shallow bogs and river margins throughout the boreal ecosystem, including the island of Newfoundland. A combination of long-distance dispersal and colonization after deglaciation, and pollen limitation resulting from reduced pollinator diversity and abundance documented on islands, predicts the breakdown of heterostyly to favour the establishment of self-compatible homostyles on islands. To test if self-fertilizing homostyles have been selected, variation in floral characters and compatibility relationships were examined in M. trifoliata populations from the Avalon Peninsula of Newfoundland. Morph ratio and its effect on fruit and seed set were examined in nine populations. Of the seven dimorphic populations, morphs occurred in a 1:1 ratio in four populations and deviated significantly from a 1:1 ratio in three populations. The two populations monomorphic for either pin or thrum morphs set few fruits or seeds (<15%). A strictly reciprocal arrangement of stigma height and anther length was not observed between pin and thrum morphs in the majority of populations studied. Stigma-anther separation showed a bimodal distribution with few intermediate "homostylous" flowers, rather than the discreet bimodal distribution typical of distylous species. Fruit and seed set were high (>60%) in equal morph ratio populations and were not significantly correlated to stigma-anther separation, indicating that there was no selective advantage of being homostylous. All three populations tested were highly self-incompatible, confirming that there has not been a breakdown of heterostyly on the island of Newfoundland. A reduced pollinator fauna typical of island environments may have relaxed stabilizing selection for strict herkogamy between floral morphs, resulting in the observed lack of reciprocity.Key words: Menyanthes trifoliata, distyly, homostyle, reciprocal herkogamy, clonal aquatic macrophyte, island of Newfoundland.


2009 ◽  
Vol 45 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Francisco J. Valtueña ◽  
Ana Ortega-Olivencia ◽  
Tomás Rodríguez-Riaño ◽  
Josefa López

Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 330-338 ◽  
Author(s):  
Rachel B. Spigler ◽  
Shu-Mei Chang

Individuals in large plant populations are expected to benefit from increased reproductive success relative to those in small populations because of the facilitative effects of large aggregations on pollination. As populations become small, the inability to attract sufficient numbers of pollinators can reduce reproduction via pollen limitation. This study experimentally tested whether such trends occur for the herbaceous biennial Sabatia angularis (L.) Pursh (Gentianaceae). We created artificial populations of varying size consisting of potted S. angularis plants in two field sites to determine whether population size affected mean fruit and seed set. We also examined whether population size affected the degree of pollen limitation using a supplemental pollination design in one of the sites. Our results showed that, on average, seed set was lower in large populations, not small populations, of S. angularis and that this result may be due to increased pollen limitation in large populations. We suggest that in certain contexts, small populations may enjoy reproductive advantages over large populations by escaping intraspecific competition for pollinators.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 815
Author(s):  
Sandra V. Rojas-Nossa ◽  
José María Sánchez ◽  
Luis Navarro

Floral development depends on multifactor processes related to genetic, physiological, and ecological pathways. Plants respond to herbivores by activating mechanisms aimed at tolerating, compensating, or avoiding loss of biomass and nutrients, and thereby survive in a complex landscape of interactions. Thus, plants need to overcome trade-offs between development, growth, and reproduction vs. the initiation of anti-herbivore defences. This study aims to assess the frequency of phloem-feeding herbivores in wild populations of the Etruscan honeysuckle (Lonicera etrusca Santi) and study their effects on floral development and reproduction. The incidence of herbivory by the honeysuckle aphid (Hyadaphis passerinii del Guercio) was assessed in three wild populations of the Iberian Peninsula. The effect of herbivory on floral morphology, micromorphology of stigmas and pollen, floral rewards, pollination, and fruit and seed set were studied. The herbivory by aphids reduces the size of flowers and pollen. Additionally, it stops nectar synthesis and causes malformation in pollen and microstructures of stigmas, affecting pollination. As a consequence, fruit set and seed weight are reduced. This work provides evidence of the changes induced by phloem-feeding herbivores in floral development and functioning that affect the ecological processes necessary to maintain the reproductive success of plants.


Botany ◽  
2018 ◽  
Vol 96 (8) ◽  
pp. 533-545 ◽  
Author(s):  
Christopher M. Balogh ◽  
Spencer C.H. Barrett

Sexual reproduction in heterostylous populations may be vulnerable to demographic conditions because of the small number of mating types in populations. Here, we investigate mating and fertility under natural and experimental conditions in tristylous Lythrum salicaria L., an invasive species that exhibits a wide range of floral morph ratios and demographic contexts. We grew 147 open-pollinated seed families from six populations with different morph structures to estimate intermorph mating (d). In a field experiment, we used progeny ratios from 47 spatially isolated individuals to estimate d, and measured the intensity of pollen limitation experienced by the morphs. The M- and S-morphs experienced high rates of d, regardless of population size or morph ratio. Estimates for the L-morph revealed low levels of intramorph mating in three dimorphic and two trimorphic populations, but near complete intramorph mating in a monomorphic population. Despite high levels of intermorph mating in the field experiment, the morphs experienced significant pollen limitation of fruit and seed set, but this did not differ in intensity among the morphs. Our field experiment demonstrates that although plant isolation was associated with pollen limitation of seed set, “long-distance” bee-mediated pollen flow served to maintain intermorph mating. Tristyly in L. salicaria is remarkably robust to the demographic variation associated with colonization.


2020 ◽  
Vol 51 (1) ◽  
pp. 319-340
Author(s):  
Amanda D. Benoit ◽  
Susan Kalisz

Plants are the foundation of the food web and therefore interact directly and indirectly with myriad organisms at higher trophic levels. They directly provide nourishment to mutualistic and antagonistic primary consumers (e.g., pollinators and herbivores), which in turn are consumed by predators. These interactions produce cascading indirect effects on plants (either trait-mediated or density-mediated). We review how predators affect plant-pollinator interactions and thus how predators indirectly affect plant reproduction, fitness, mating systems, and trait evolution. Predators can influence pollinator abundance and foraging behavior. In many cases, predators cause pollinators to visit plants less frequently and for shorter durations. This decline in visitation can lead to pollen limitation and decreased seed set. However, alternative outcomes can result due to differences in predator, pollinator, and plant functional traits as well as due to altered interaction networks with plant enemies. Furthermore, predators may indirectly affect the evolution of plant traits and mating systems.


Grana ◽  
2019 ◽  
Vol 58 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Vinod Prasad Khanduri ◽  
Kewat Sanjay Kumar ◽  
Chandra Mohan Sharma ◽  
Manoj Kumar Riyal ◽  
Kalpataru Kar

2005 ◽  
Vol 28 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Tom J. de Jong ◽  
Judith C. Batenburg ◽  
Peter G.L. Klinkhamer

2004 ◽  
Vol 52 (3) ◽  
pp. 353 ◽  
Author(s):  
A. B. Hingston ◽  
B. M. Potts ◽  
P. B. McQuillan

Flowers of the commercially important tree Eucalyptus globulus Labill. ssp. globulus were visited by a wide variety of insects and birds within its natural distribution. Flowers were visited so frequently that most available nectar was consumed, but seed production within 5 m of the ground was consistently far less than the maximum possible, indicating the presence of large numbers of inefficient pollinators and few efficient pollinators. Pollen limitation was more severe on fully self-incompatible trees than on partially self-compatible trees, demonstrating that pollinator inefficiency resulted from infrequent outcrossing rather than inability to deposit pollen on stigmas. The flower visitors that were responsible for almost all nectar consumption from flowers within 5 m of the ground were insects that were able to permeate cages with 5-mm apertures but not cages with 1-mm apertures, the most abundant of which was the introduced honeybee Apis mellifera L. These insects contributed less than 20% of the maximum possible seed set, indicating that they were inefficient pollinators. Birds and smaller insects made lesser contributions to seed production, but consumed little nectar within 5 m of the ground. However, anthophilous birds appeared to mostly forage higher in the trees and probably consumed more nectar from, and provided more pollination services to, flowers higher in the trees.


Sign in / Sign up

Export Citation Format

Share Document