morph ratios
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings that they obtain. Previously, we have shown qualitative support for this prediction across nine wing-dimorphic fig wasp species. Here I test the quantitative prediction in the fig wasp Pseudidarnes minerva. In addition, some fig wasp species that lack winged males, but have two wingless morphs, show a conditional strategy with morph determination influenced by the number of wasps developing in a patch. I also test for this alternative pattern in the wing-dimorphic P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusion The morph ratio in P. minerva is consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


Heredity ◽  
2021 ◽  
Author(s):  
Gabe Winter ◽  
Mahendra Varma ◽  
Holger Schielzeth

AbstractThe green–brown polymorphism of grasshoppers and bush-crickets represents one of the most penetrant polymorphisms in any group of organisms. This poses the question of why the polymorphism is shared across species and how it is maintained. There is mixed evidence for whether and in which species it is environmentally or genetically determined in Orthoptera. We report breeding experiments with the steppe grasshopper Chorthippus dorsatus, a polymorphic species for the presence and distribution of green body parts. Morph ratios did not differ between sexes, and we find no evidence that the rearing environment (crowding and habitat complexity) affected the polymorphism. However, we find strong evidence for genetic determination for the presence/absence of green and its distribution. Results are most parsimoniously explained by three autosomal loci with two alleles each and simple dominance effects: one locus influencing the ability to show green color, with a dominant allele for green; a locus with a recessive allele suppressing green on the dorsal side; and a locus with a recessive allele suppressing green on the lateral side. Our results contribute to the emerging contrast between the simple genetic inheritance of green–brown polymorphisms in the subfamily Gomphocerinae and environmental determination in other subfamilies of grasshoppers. In three out of four species of Gomphocerinae studied so far, the results suggest one or a few loci with a dominance of alleles allowing the occurrence of green. This supports the idea that brown individuals differ from green individuals by homozygosity for loss-of-function alleles preventing green pigment production or deposition.


2020 ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings they obtain. Previously, we have shown qualitative support for this prediction across nine fig wasp species. Here I test the quantitative prediction in a population of the fig wasp Pseudidarnes minerva. In addition, while Hamilton envisaged simple Mendelian strategies, some fig wasp species with two wingless male morphs (but no winged males) show a conditional strategy with morph determination influenced by the number of wasps developing in a patch - I also test for this pattern in P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusions Morph ratios in P. minerva are consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


Botany ◽  
2018 ◽  
Vol 96 (8) ◽  
pp. 533-545 ◽  
Author(s):  
Christopher M. Balogh ◽  
Spencer C.H. Barrett

Sexual reproduction in heterostylous populations may be vulnerable to demographic conditions because of the small number of mating types in populations. Here, we investigate mating and fertility under natural and experimental conditions in tristylous Lythrum salicaria L., an invasive species that exhibits a wide range of floral morph ratios and demographic contexts. We grew 147 open-pollinated seed families from six populations with different morph structures to estimate intermorph mating (d). In a field experiment, we used progeny ratios from 47 spatially isolated individuals to estimate d, and measured the intensity of pollen limitation experienced by the morphs. The M- and S-morphs experienced high rates of d, regardless of population size or morph ratio. Estimates for the L-morph revealed low levels of intramorph mating in three dimorphic and two trimorphic populations, but near complete intramorph mating in a monomorphic population. Despite high levels of intermorph mating in the field experiment, the morphs experienced significant pollen limitation of fruit and seed set, but this did not differ in intensity among the morphs. Our field experiment demonstrates that although plant isolation was associated with pollen limitation of seed set, “long-distance” bee-mediated pollen flow served to maintain intermorph mating. Tristyly in L. salicaria is remarkably robust to the demographic variation associated with colonization.


2017 ◽  
Vol 68 (7) ◽  
pp. 680 ◽  
Author(s):  
Aneta Słomka ◽  
Klaudia Michno ◽  
Franciszek Dubert ◽  
Michał Dziurka ◽  
Przemysław Kopeć ◽  
...  

The biased ratio (1 : 2.7–1 : 19) of long-styled Pin and short-styled Thrum flowers (anisoplethy) in common buckwheat (Fagopyrum esculentum) with low seed set (9.8–33.1%) is documented for the first time in two cultivars (Kora, Panda) and two strains (PA13, PA14). To establish the reasons for low grain yield we studied pollen, embryo sacs, embryos, counted stigmas with compatible pollen and with compatible pollen tubes, and recorded seed set under semi-controlled conditions with open access of pollinators. We also sought to improve seed yield via exogenous application of eight biostimulants at the beginning of flowering. Pin pollen supply to Thrum stigmas was low, due to the imbalance of flower morphs. This did not affect seed set or male success in either flower morph. The pollen of Pin or Thrum was highly viable (97.9–99.9%) in all studied cultivars and strains, germinating well on compatible stigmas. The female success of both flower types was much lower; 49–59% of the ovules exhibited signs of degeneration (whole flower buds, ovules only) or abortion (mature embryo sacs, proembryos, embryos); the highest share of mature embryo sac abortions resulted from degeneration of synergids or the whole egg apparatus. Three biostimulants (Gibberellic acid, putrescine, Asahi SL) in PA13 and six (1-Naphthaleneacetic acid, Gibberellic acid, TYTANIT, putrescine, 6-Benzylaminopurine, Asahi SL) in PA14 decreased embryo abortions (4–12 fold) and increased seed set (0.4–2.4 times), but seed set was still low and never exceeded 33% (the highest value of the untreated with biostimulants plants). Biostimulant treatments were most effective on PA14 strain increasing seed set in 7 out of 8 treatments. These were Gibberellic acid, putrescine and Asahi SL improving seed set of two among four analysed genotypes.


Botany ◽  
2016 ◽  
Vol 94 (10) ◽  
pp. 983-992
Author(s):  
Jennine L.M. Pedersen ◽  
S. Ellen Macdonald ◽  
Scott E. Nielsen

Distylous species typically experience self-incompatibility with one morph often having partial self-compatibility. Small populations may therefore experience greater rates of selfing/intramorph crosses leading to skewed morph ratios and reduced seed production. For the distylous species Houstonia longifolia Gaertn. (“imperiled” at its northwestern range limit in Alberta), we examined whether small populations were morph-biased and whether seed production was affected by population size, local density, plant size, morph type, and surrounding morph ratio. For focal plants in several populations, we measured size (height, number of stems) and local density (1 m2) of pins and thrums, with the focal plants collected for seed counts. Population size was estimated from densities in systematically located quadrats in each population. Morph ratios were pin-biased in small populations but were even to slightly thrum-biased in large populations. The critical population size for maintaining an equal morph ratio was ∼726 plants. Seed production was most influenced by the interaction between morph type and surrounding morph ratio, which were themselves influenced by population size (Allee effect). Seed production increased for thrums but decreased for pins as the proportion of surrounding pins increased, suggesting strong incompatibility. These results provide guidance on population size and morph ratios for conservation actions.


2015 ◽  
Vol 112 (29) ◽  
pp. 8859-8866 ◽  
Author(s):  
Spencer C. H. Barrett

Flowering plants possess an unrivaled diversity of mechanisms for achieving sexual and asexual reproduction, often simultaneously. The commonest type of asexual reproduction is clonal growth (vegetative propagation) in which parental genotypes (genets) produce vegetative modules (ramets) that are capable of independent growth, reproduction, and often dispersal. Clonal growth leads to an expansion in the size of genets and increased fitness because large floral displays increase fertility and opportunities for outcrossing. Moreover, the clonal dispersal of vegetative propagules can assist “mate finding,” particularly in aquatic plants. However, there are ecological circumstances in which functional antagonism between sexual and asexual reproductive modes can negatively affect the fitness of clonal plants. Populations of heterostylous and dioecious species have a small number of mating groups (two or three), which should occur at equal frequency in equilibrium populations. Extensive clonal growth and vegetative dispersal can disrupt the functioning of these sexual polymorphisms, resulting in biased morph ratios and populations with a single mating group, with consequences for fertility and mating. In populations in which clonal propagation predominates, mutations reducing fertility may lead to sexual dysfunction and even the loss of sex. Recent evidence suggests that somatic mutations can play a significant role in influencing fitness in clonal plants and may also help explain the occurrence of genetic diversity in sterile clonal populations. Highly polymorphic genetic markers offer outstanding opportunities for gaining novel insights into functional interactions between sexual and clonal reproduction in flowering plants.


2015 ◽  
Vol 43 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Ming-Lin Chen ◽  
Ya-Li You ◽  
Hui-Hui Wen ◽  
Ying Li

Distyly has been confirmed in Fagopyrum dibotrys (D. Don) Hara. The species are dimorphic in style length, anther height, pollen size and number but not in flower diameter, pollen surface ornamentation and stigma papilla cells. In F. dibotrys populations, style-morph ratios vary from isoplethy (1L : 1S) to strongly L-biased, or they more often contain only the L-morph. Moreover, it was found that larger isoplethic populations of F. dibotrys could produce more seeds than smaller single-morph populations. F. dibotrys had a smaller population size, morph-biased populations, and lower seed setting, which could be the reasons for the decrease in its population DOI: http://dx.doi.org/10.3329/bjb.v43i2.21673 Bangladesh J. Bot. 43(2): 197-205, 2014 (September)


Botany ◽  
2012 ◽  
Vol 90 (11) ◽  
pp. 1180-1185 ◽  
Author(s):  
Spencer C.H. Barrett ◽  
Mary T.K. Arroyo

Negative frequency-dependent selection resulting from disassortative mating should result in equal morph ratios in tristylous populations at equilibrium. However, surveys of morph-frequency variation in tristylous species commonly report deviations from equality. Here, we report variation in morph ratios in Oxalis squamata Zucc., an endemic of the Andean region of Chile and Argentina. Absence of clonal propagation in this species allows unambiguous estimates of the morph ratio of genets. We sampled floral morph ratios in 20 populations occurring in Central Chile and investigated the relation between morph evenness in populations and their size. All populations of O. squamata were tristylous but with significant heterogeneity among populations in morph ratios. Although small populations exhibited a greater variance in morph evenness, biased ratios were also evident in several large populations. We found no evidence of morph loss or a consistent bias in morph frequencies as reported in some tristylous species. Biased morph frequencies in large populations probably arise from episodic sexual recruitment following disturbance and a slow approach to equilibrium.


Sign in / Sign up

Export Citation Format

Share Document