dioecious plants
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Patrick Kavanagh

<p>Insularity is known to produce predictable evolutionary changes in plants. For example, herbaceous plants often evolve woodiness and seeds tend to have reduced dispersal capabilities on islands. However, our understanding of how other plant traits may evolve on islands is lacking. Furthermore, plants are modular organisms and by investigating evolutionary changes in specific plant traits we may better understand macroevolutionary processes on islands.  In this thesis, I investigate evolutionary changes in a range of plant traits on islands. First, I tested for evolutionary changes in seed size on islands (Chapter 2). Island plants consistently produced larger seeds than mainland relatives. Furthermore, this result was consistent regardless of differences in dispersal mode, growth form and evolutionary history. Selection may favour increased seed size to reduce dispersal distances. Additionally, selection may favour larger seeds due to the competitive advantage conferred to developing seedlings.  Many animal taxa exhibit increased sexual size dimorphism (SSD) on islands, as predicted by the niche variation hypothesis. However, patterns of SSD among dioecious plants on islands are unknown. In Chapter 3 I tested for differences in SSD of dioecious plants that colonized four island groups from New Zealand (mainland). The degree of SSD did not vary predictable between island and mainland plants, contrary to predictions of the niche variation hypothesis. However, SSD was consistently female biased on the mainland and results suggest selection is acting to increase the size of both sexes on islands.  Evolutionary changes in island plants may be a response to herbivory by unique large browsers. For example, the divaricate growth form is common in the New Zealand flora and may have deterred browsing moa. In Chapter 4 I tested for differences in traits associated with the divaricate growth form between plants from mainland New Zealand and Chatham Island. Results suggest that an absence of moa on Chatham Island has relaxed selection for traits associated with the divaricate growth form.  An emerging body of research suggests aposematism (warning signals to herbivores) may be common in plants. However, previous investigations have not appreciated the fact that the perspective of terrestrial herbivores changes as plants grown vertically. Furthermore, ontogenetic changes in the capacity of plants to defend themselves may influence the reliability of warning signals. In Chapter 5 I tested for ontogenetic changes in two potentially aposematic signals produced by Pseudopanax crassifolius. Aposematism on upper leaf surfaces peaked early in ontogeny, providing a dishonest signal of defense. Conversely, signaling on the underside of leaves peaked later in ontogeny and scaled positively with structural defenses.   The results of this thesis suggest selection is acting on specific plant traits on islands. Evolutionary pathways, such as the evolution of woodiness, may be better explained by considering selection acting on other plant traits. For example, selection acting on seed size may facilitate evolutionary size changes evident at later life-history stages. A lack of consensus exists regarding the role of insular herbivores in the evolution of island plants. The results of Chapters 4 and 5 suggest herbivory has played an important role in the evolution of novel morphology of island plants. Considering trait specific changes of plants on islands may further our understanding of prominent evolutionary pathways by pinpointing the action of selection.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1814
Author(s):  
Agnieszka Stasiak ◽  
Piotr Latocha ◽  
Monika Bieniasz

Successful pollination and fertilization are crucial processes for obtaining a high yield, especially for dioecious plants such as A. arguta. Determination of pollen tube growth on stigma and fruit development parameters, which were investigated in this study, can enable the evaluation of male–female compatibility—one of the factors of successful pollination. Pollen quality and grain size were analysed for two years on six male cultivars of A. arguta and one of A. chinensis var. deliciosa. Results showed high pollen quality, both with parameters above 80%. Pollen germination in vivo showed differences in pollen–stigma interactions. The highest positive interactions were observed for all female cultivar crosses with male ‘Nostino’ and ‘Rubi’ and the lowest one for A. chinensis var. deliciosa ‘Tomuri’. However, fruit set and average fruit weight were equally high in most of the combinations (fruit set above 75% for the majority of combinations). Some differences were noticed in the average seed number per fruit and weight. All tested male cultivars were able to fertilize tested female cultivars, but taking into account other characteristics such as pollen efficiency, some male cultivars seemed to be more proper for commercial orchards. Using A. chinensis var. deliciosa pollen seems to be unreasonable in tested conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adriana Aranda-Rickert ◽  
Javier Torréns ◽  
Natalia I. Yela ◽  
María Magdalena Brizuela ◽  
Verónica S. Di Stilio

Dioecious plants are obligate outcrossers with separate male and female individuals, which can result in decreased seed set with increasing distance between the sexes. Wind pollination is a common correlate of dioecy, yet combined wind and insect pollination (ambophily) could be advantageous in compensating for decreased pollen flow to isolated females. Dioecious, ambophilous gymnosperms Ephedra (Gnetales) secrete pollination drops (PDs) in female cones that capture airborne pollen and attract ants that feed on them. Plant sugary secretions commonly reward ants in exchange for indirect plant defense against herbivores, and more rarely for pollination. We conducted field experiments to investigate whether ants are pollinators and/or plant defenders of South American Ephedra triandra, and whether their contribution to seed set and seed cone protection varies with distance between female and male plants. We quantified pollen flow in the wind and assessed the effectiveness of ants as pollinators by investigating their relative contribution to seed set, and their visitation rate in female plants at increasing distance from the nearest male. Ants accounted for most insect visits to female cones of E. triandra, where they consumed PDs, and pollen load was larger on bigger ants without reduction in pollen viability. While wind pollination was the main contributor to seed set overall, the relative contribution of ants was distance dependent. Ant contribution to seed set was not significant at shorter distances, yet at the farthest distance from the nearest male (23 m), where 20 times less pollen reached females, ants enhanced seed set by 30% compared to plants depending solely on wind pollination. We found no evidence that ants contribute to plant defense by preventing seed cone damage. Our results suggest that, despite their short-range movements, ants can offset pollen limitation in isolated females of wind-pollinated plants with separate sexes. We propose that ants enhance plant reproductive success via targeted delivery of airborne pollen, through frequent contact with ovule tips while consuming PDs. Our study constitutes the first experimental quantification of distance-dependent contribution of ants to pollination and provides a working hypothesis for ambophily in other dioecious plants lacking pollinator reward in male plants.


2021 ◽  
Author(s):  
Jitka Zluvova ◽  
Roman Hobza ◽  
Bohuslav Janousek

We have attempted to answer the question of whether the presence of sex chromosomes in the genome can affect the evolution of the autosomal part of the genome. As a model, we used dioecious plants from the section Otites of the genus Silene. We have observed a rise in adaptive evolution in the autosomal and pseudoautosomal parts of the genome, which are associated with the evolution of dioecy. This rise is caused neither by the accumulation of sexually antagonistic genes in the pseudoautosomal region nor by the co-evolution of genes acting in mitochondria (in spite of the fact that the dioecy evolved in this case most likely from cytoplasmic male sterility). Thus, this rise in the amount of positively selected codons is most likely caused by the adaptive evolution of genes involved in the specialization of the autosomal part of the genome on the dioecy as described in sex-allocation theory.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yulin He ◽  
Han Xu ◽  
Hanlun Liu ◽  
Meiling Luo ◽  
Chengjin Chu ◽  
...  

AbstractPlants respond differently to the identity of their neighbors, such as their sex and kinship, showing plasticity in their traits. However, how the functional traits of dioecious trees are shaped by the recognition of neighbors with different sex and kinship remains unknown. In this study, we set up an experiment with different kin/nonkin and inter/intrasexual combinations for a dioecious tree species, Diospyros morrisiana. The results showed that plants grew better with nonkin and intrasexual neighbors than with kin and intersexual neighbors. Kin combinations had significantly shorter root length in the resource-overlapping zone than nonkin combinations, suggesting that kin tended to reduce competition by adjusting their root distribution, especially among female siblings. Our study suggested that the seedling growth of D. morrisiana was affected by both the relatedness and sexual identity of neighboring plants. Further analysis by gas chromatography-mass spectrometry showed that the root exudate composition of female seedlings differed from that of male seedlings. Root exudates may play important roles in sex competition in dioecious plants. This study indicates that sex-specific competition and kin recognition interact and co-shape the traits of D. morrisiana seedlings, while intrasexual and nonkin neighbors facilitate the growth of seedlings. Our study implies that kin- and sex-related interactions depend on different mechanisms, kin selection, and niche partitioning, respectively. These results are critical for understanding how species coexist and how traits are shaped in nature.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 844
Author(s):  
Kinga Nowak ◽  
Marian J. Giertych ◽  
Emilia Pers-Kamczyc ◽  
Peter A. Thomas ◽  
Grzegorz Iszkuło

Female individuals of dioecious plants invest their resources more in storage and defence, and the males have higher nitrogen content invested in the production of pollen grains. An unresolved problem is whether this strategy occurs only in sexually mature plants or can also occur in juvenile plants. To answer this, Taxus baccata (L.) needles from the mature plants and rooted cuttings (juveniles) in a pot experiment were compared for the content of carbon, nitrogen, starch, total non-structural carbohydrates (TNC), and total phenolic compounds (TPhC). The results indicate that the differences between sexes occurred mainly in sexually mature plants, where the starch content was higher in females and nitrogen in males. However, the novelty of the results is that TPhC was generally higher in females than males in both adults and juveniles, suggesting that defence is a priority for females from an early age. We do not know if this is an innate trait because the strobili production (albeit at a very low level) of juveniles was observed in all individuals after the autumn of the first year. We found no effect of fertilization on sex-specific response in the pot experiment, which may be related to the lower reproductive effort of juveniles.


2021 ◽  
Author(s):  
Miao Liu ◽  
Helena Korpelainen ◽  
Chunyang Li

Abstract Dioecious plants exhibit sexual dimorphism in both sexual features (reproductive organs) and secondary sex characteristics (vegetative traits). Sexual differences in secondary traits, including morphological, physiological and ecological characters, have been commonly associated with trade-offs between the cost of reproduction and other plant functions. Such trade-offs may be modified by environmental stressors, although there is evidence that sexually dimorphic responses to stress do not always exist in all plant species. When sexual dimorphism exists, sexually different responses appear to depend on the species and stress types. Yet, further studies on dioecious plant species are needed to allow the generalization of stress effects on males and females. Additionally, sexual dimorphism may influence the frequency and distribution of the sexes along environmental gradients, likely causing niche differentiation and spatial segregation of sexes. At the present, the causes and mechanisms governing sex ratio biases are poorly understood. This review aims to discuss sex-specific responses and sex ratio biases occurring under adverse conditions, which will advance our knowledge of sexually dimorphic responses to environmental stressors.


Author(s):  
Kinga Nowak ◽  
Marian J. Giertych ◽  
Emilia Pers-Kamczyc ◽  
Peter A. Thomas ◽  
Grzegorz Iszkuło

AbstractCauses of secondary sexual dimorphism (SSD) in dioecious plants are very poorly understood, especially in woody plants. SSD is shown mainly in mature plants, but little is known about whether secondary sexual dimorphism can occur in juveniles. It is also assumed that stress conditions intensify differences between the sexes due to the uneven reproductive effort. Therefore, the following research hypotheses were tested: (1) secondary sexual dimorphism will be visible in juveniles; (2) unfavourable soil conditions are the cause of more pronounced differences between the sexes. Rooted shoots of the common yew (Taxus baccata L.) and common juniper (Juniperus communis L.), previously harvested from parental individuals of known sex were used in the study. During two growing seasons vegetation periods and four times a year, comprehensive morphological features of whole plants were measured. Some SSD traits were visible in the analysed juveniles. Contrary to expectations, differences were more pronounced in the fertilized treatment. Both species reacted to fertilization in different ways. Female yew had a clearly higher total plant mass, root mass, and mean root area when fertilized, whereas male juniper had a higher root mass when fertilized. Differences between the sexes independent of the fertilization treatment were seen, which can be interpreted as sexual adaptations to a continued reproduction. Female yews and male junipers made better use of fertile habitats. Our study showed that SSD may be innate, and sexual compensatory mechanisms could generate uneven growth and development of both sexes. Because the SSD pattern was rather different in both species, it was confirmed that SSD is connected with the specific life histories of specific species rather than a universal strategy of dioecious species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ana Paula Leite Montalvão ◽  
Birgit Kersten ◽  
Matthias Fladung ◽  
Niels Andreas Müller

The diversity of inflorescences among flowering plants is captivating. Such charm is not only due to the variety of sizes, shapes, colors, and flowers displayed, but also to the range of reproductive systems. For instance, hermaphrodites occur abundantly throughout the plant kingdom with both stamens and carpels within the same flower. Nevertheless, 10% of flowering plants have separate unisexual flowers, either in different locations of the same individual (monoecy) or on different individuals (dioecy). Despite their rarity, dioecious plants provide an excellent opportunity to investigate the mechanisms involved in sex expression and the evolution of sex-determining regions (SDRs) and sex chromosomes. The SDRs and the evolution of dioecy have been studied in many species ranging from Ginkgo to important fruit crops. Some of these studies, for example in asparagus or kiwifruit, identified two sex-determining genes within the non-recombining SDR and may thus be consistent with the classical model for the evolution of dioecy from hermaphroditism via gynodioecy, that predicts two successive mutations, the first one affecting male and the second one female function, becoming linked in a region of suppressed recombination. On the other hand, aided by genome sequencing and gene editing, single factor sex determination has emerged in other species, such as persimmon or poplar. Despite the diversity of sex-determining mechanisms, a tentative comparative analysis of the known sex-determining genes and candidates in different species suggests that similar genes and pathways may be employed repeatedly for the evolution of dioecy. The cytokinin signaling pathway appears important for sex determination in several species regardless of the underlying genetic system. Additionally, tapetum-related genes often seem to act as male-promoting factors when sex is determined via two genes. We present a unified model that synthesizes the genetic networks of sex determination in monoecious and dioecious plants and will support the generation of hypothesis regarding candidate sex determinants in future studies.


Author(s):  
Liling Liu ◽  
Lu Lu ◽  
Huilin Li ◽  
Zhensi Meng ◽  
Tingfa Dong ◽  
...  

Females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microbiota in dioecious plants remains largely unexplored. Here, the diversity and composition of female and male Populus cathayana phyllosphere bacterial and fungal communities were investigated using 16S rRNA/ITS1 gene-based MiSeq sequencing. The divergences of bacterial and fungal community compositions occurred between females and males. Both females and males had their unique phyllosphere bacteria and fungi microbiota, such as bacteria Gemmata (5.41%) and fungi Pringsheimia (0.03%) in females, and bacteria Chitinophaga (0.009%) and fungi Phaeococcomyces (0.02%) in males. Significant differences in the relative abundance of bacterial phyla Proteobacteria, Planctomycetes and the fungal phyla Ascomycota, Basidiomycota (P < 0.05) were also found between females and males. Some bacterial genera Spirosoma and Amnibacterium, and fungal genera Venturia, Suillus, and Elmerina were significantly enriched in males (P < 0.05). In contrast, fungal genera Phoma and Aureobasidium were found significantly higher in females than in males (P < 0.05). The mineral, inorganic and organic nutrients content contributed differently to the divergence of female and male phyllosphere microbial communities, with 87.08% and 45.17% of the variations being explained for bacterial and fungal communities, respectively. These results highlight the sexual discrimination of phyllosphere microbes on the dioecious plants and provide hints on the potential host-associated species in phyllosphere environments.


Sign in / Sign up

Export Citation Format

Share Document