scholarly journals Agricultural water use accounting provides path for surface water use solutions

2020 ◽  
Vol 74 (1) ◽  
pp. 46-57
Author(s):  
Glenn McGourty ◽  
David Lewis ◽  
Josh Metz ◽  
John Harper ◽  
Rachel Elkins ◽  
...  
Author(s):  
Zixu Qiao ◽  
Long Ma ◽  
Tingxi Liu ◽  
Xing Huang

Abstract With the continuous development of the population and social economy, the spatial and temporal distribution of water resources in arid inland river basins is severely uneven, and there is a sharp contradiction between agricultural water use and ecological water use. Irrational development and utilization of water resources has led to many problems, such as shrinking oases and drying lakes. To solve this problem, this study proposes a multiobjective, multiwater-source, ecological stability-oriented double-layer model for optimal allocation of water resources based on the large-scale system decomposition–coordination principle, the water balance principle, and a water supply and demand forecasting model. This model can resolve the contradiction between agricultural water use and ecological water use by optimizing and adjusting the crop planting structure, industrial structure, and the amount of water allocated to and groundwater level in each region and thereby achieve ecological stability and restoration of oases. The developed model was applied to the Heihe River Basin in an inland region of Northwest China. The long-term time series data of 2000–2016 were used to construct and calibrate the model. Finally, the practical ecological stability-oriented plan for conjunctive allocation of surface water and groundwater in different plan years was proposed. This model enriches the research results related to the conjunctive allocation of surface water and groundwater and provides a reference for the ecological restoration of oases in arid inland river basins.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


2019 ◽  
Vol 218 ◽  
pp. 17-29 ◽  
Author(s):  
Andrew Ogilvie ◽  
Jeanne Riaux ◽  
Sylvain Massuel ◽  
Mark Mulligan ◽  
Gilles Belaud ◽  
...  

2016 ◽  
Vol 112 ◽  
pp. 3176-3184 ◽  
Author(s):  
Shan Guo ◽  
Geoffrey Qiping Shen ◽  
Yi Peng

2021 ◽  
Author(s):  
Shikun Sun ◽  
Yihe Tang

<p>The agriculture sector is one of the largest users of water and a significant source of greenhouse gas (GHG) emissions. The development of low-GHG-emission and water-conserving agriculture will inevitably be the trend in the future. Because of the physiological differences among crops and their response efficiency to external changes, changes in planting structure, climate and input of production factors will have an impact on regional agricultural water use and GHG emissions. This paper systematically analyzed the spatial-temporal evolution characteristics of crop planting structure, climate, and production factor inputs in Heilongjiang Province, the main grain-producing region of China, from 2000 to 2015, and quantified the regional agricultural water use and GHG emissions characteristics under different scenarios by using the Penman-Monteith formula and the Denitrification-Decomposition (DNDC) model. The results showed that the global warming potential (GWP) increased by 15% due to the change in planting structure. A large increase in the proportion of rice and corn sown was the main reason. During the study period, regional climate change had a positive impact on the water- saving and emission reduction of the agricultural industry. The annual water demand per unit area decreased by 19%, and the GWP decreased by 12% compared with that in 2000. The input of fertilizer and other means of production will have a significant impact on GHG emissions from farmlands. The increase in N fertilizer input significantly increased N<sub>2</sub>O emissions, with a 5% increase in GWP. Agricultural water consumption and carbon emissions are affected by changes in climate, input of means of production, and planting structure. Therefore, multiple regulatory measures should be taken in combination with regional characteristics to realize a new layout of planting structure with low emissions, water conservation, and sustainability.</p>


Eos ◽  
2017 ◽  
Author(s):  
Terri Cook

A new technique that merges data gathered by multiple satellites can be used to monitor agricultural water use and improve water quality assessments around the globe.


Sign in / Sign up

Export Citation Format

Share Document