scholarly journals Tribological Behavior Simulation of Ceramic Material Using the Finite Element Analysis

2020 ◽  
Vol 57 (1) ◽  
pp. 272-277
Author(s):  
Adina Oana Armencia ◽  
Loredana Liliana Hurjui ◽  
Cristina Claudia Tarniceriu ◽  
Iulia Saveanu ◽  
Carina Balcos

Simulating the biomechanical behavior of a reconstruction using the finite element analysis method is a modern method necessary before the practical stage of a research, thus enabling the precise shaping of certain trajectories in the approach of certain directions of practical applicability, as well as obtaining final results with relevant data (results coupled with experimental models that reiterate the clinical situation that will be later analyzed).

2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 791-793 ◽  
pp. 718-721
Author(s):  
Man Man Xu ◽  
Yu Li ◽  
Sai Nan Xie ◽  
Qing Hua Chen

To analyse the road-header rack and pinion by using the finite element analysis software COSMOS/WORKS. Compared to the traditional analytic calculation and numerical analysis method, it is more intuitively get 28 ° pressure angle spur gear rack meshing stress and strain distribution, which can rack and pinion improvements designed to provide scientific reference.


Author(s):  
W. Reinhardt

Shakedown is a cyclic phenomenon, and for its analysis it seems natural to employ a cyclic analysis method. Two problems are associated when this direct approach is used in finite element analysis. Firstly, the analysis typically needs to be stabilized over several cycles, and the analysis of each individual cycle may need a considerable amount of computing time. Secondly, even in cases where a stable cycle is known to exist, the finite element analysis can show a small continuing amount of strain accumulation. For elastic shakedown, non-cyclic analysis methods that use Melan’s theorem have been proposed. The present paper extends non-cyclic lower bound methods to the analysis of plastic shakedown. The proposed method is demonstrated with several example problems.


2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


2013 ◽  
Vol 744 ◽  
pp. 205-210 ◽  
Author(s):  
De Zheng Liu ◽  
Qiang Xu ◽  
Zhong Yu Lu ◽  
Dong Lai Xu ◽  
Feng Tan

The preliminary validation of in-house finite element analysis software for creep damage mechanics is reported. The Finite Element Analysis Method and the programme strcuture for creep damage problem were reported elsewhere and the validation conducted so far include plane stress, plane strain, and axisymmetric cases. Furture work is also outlined.


2020 ◽  
pp. 004051752094447 ◽  
Author(s):  
Linlin Lu ◽  
Wei Fan ◽  
Xue Meng ◽  
Tao Liu ◽  
Ling Han ◽  
...  

The small-size microstructure models of the 3D needled waste cotton fiber/epoxy composites (3DNWCFCs) were brought out to predict their key vibration parameters (natural frequency and mode shapes) with the finite element analysis method. Six kinds of 3DNWCFCs with different parameters were prepared and tested by the experimental modal analysis method to verify the accuracy of the prediction of the natural frequencies and mode shapes with the finite element method. The effects of the fiber volume content and needling density of the composites on the modal behavior were investigated. The natural frequency of the cantilever beams of the composites increased with the increase of the fiber volume content and increased at first then decreased with the increasing needling density. The effect of needling density on the vibration properties of the composite depended on the degree of damage and entanglement of Z-direction fibers. The comparative analysis of the finite element analysis and the experimental results showed that the small-size microstructure models of the 3DNWCFCs were effective to predict their vibration parameters. Therefore, the small-size finite element models can be used to predict the modal properties of the staple fiber reinforced composites effectively with less time and lower economic costs.


Sign in / Sign up

Export Citation Format

Share Document