scholarly journals Erosive Potential of Three Different Beverages on Human Enamel and Dentine: An in vitro Study

2001 ◽  
Vol 71 (3) ◽  
pp. 192-196
Author(s):  
Cristian Funieru ◽  
Ioana Andrada Obagiu ◽  
Roxana Oancea ◽  
Bogdan Dobrica ◽  
Ruxandra Ionela Sfeatcu ◽  
...  

A lot of studies reported a strong association between beverages consumption and dental erosion. The erosive effect of soft drinks depends on their composition, pH or on individual salivary flow rate. The main methods used for analysing this effect are: profilometry, which measuring the enamel loss during demineralisation, and microscopic analysis. This study is an experiment developed in order to analyse the human enamel and dentine surfaces previously exposed to beverages. The main results of this study showed that soft drinks which contain both, sugar and phosphoric acid have the greatest erosive potential on human enamel and dentine compared to other beverages.

2014 ◽  
Vol 113 (11) ◽  
pp. 850-856 ◽  
Author(s):  
Yin-Lin Wang ◽  
Chia-Chieh Chang ◽  
Chih-Wen Chi ◽  
Hao-Hueng Chang ◽  
Yu-Chih Chiang ◽  
...  

2017 ◽  
Vol 63 (4) ◽  
pp. 3933-3945
Author(s):  
Khaled Haggag ◽  
Muhammad Abbas ◽  
Zainab EL Sharkawy

2015 ◽  
Vol 40 (5) ◽  
pp. 492-502 ◽  
Author(s):  
GC Oliveira ◽  
AP Boteon ◽  
FQ Ionta ◽  
MJ Moretto ◽  
HM Honório ◽  
...  

SUMMARY Resin-based materials that show promising effects for preventing the progression of erosion have been studied. This in vitro study evaluated the effects of applying resin-based materials, including resin infiltration, on previously eroded enamel subjected to erosive challenges. The influence of enamel surface etching prior to application of the material was also studied. Bovine enamel blocks were immersed in hydrochloric acid (HCl), 0.01 M (pH 2.3), for 30 seconds in order to form a softened erosion lesion. The blocks were then randomly divided into nine groups (n=12) and treated as follows: C = control without treatment; Hel = pit & fissure resin sealant (Helioseal Clear); Adh = two-step self-etching adhesive system (AdheSe); Tet = two-step conventional adhesive system (Tetric N-bond); and Inf = infiltrant (Icon). The Helno, Adhno, Tetno, and Infno groups received the same materials without (or with no) surface conditioning. The depth of the material's penetration into softened erosion lesions was qualitatively analyzed using reflection and fluorescence confocal microscopy. After application of the materials, the blocks were immersed in HCl for two minutes; this step was followed by immersion in artificial saliva for 120 minutes four times a day for five days (erosive cycling). Both the enamel alteration and material thickness were analyzed using profilometry, and the results were submitted to Kruskal-Wallis and Dunn tests (p>0.05). Images from the confocal microscopy showed minimal penetration of Adh/Adhno and deep penetration of Inf/Infno into the erosive lesions. The groups Hel, Adh, Inf, Tetno, and Infno resulted in the formation of a layer of material over the enamel, which was effective in inhibiting the progression of erosion. In conclusion, the infiltrant, with or without etching, was able to penetrate and protect the enamel against dental erosion. The other resin-based materials, except for the two-step conventional adhesive, were able to penetrate and inhibit the progression of erosive lesions only when they were applied after enamel etching.


2015 ◽  
Vol 24 (5) ◽  
pp. 451-457 ◽  
Author(s):  
Radomir Barac ◽  
Jovanka Gasic ◽  
Natasa Trutic ◽  
Slavica Sunaric ◽  
Jelena Popovic ◽  
...  

2008 ◽  
Vol 02 (03) ◽  
pp. 167-175 ◽  
Author(s):  
Abdulkadir Sengun ◽  
Hasan Orucoglu ◽  
Ilknur Ipekdal ◽  
Fusun Ozer

ABSTRACTObjectives: The purpose of this in vitro study was to evaluate whether mechanical alteration of the enamel surfaces with air abrasion and bur abrasion techniques could enhance the bonding performance of a three step and a self etching adhesive resin systems to enamel.Methods: 126 extracted lower human incisor teeth were used. The teeth were divided into three groups including 40 teeth each. First group; teeth were used as control and no preparation was made on enamel surfaces, 2nd group; outer enamel surfaces were air abraded, 3rd group; outer enamel surfaces were abraded mechanically with a diamond fissure bur. Cylinder composite resin blocks were bonded to the buccal enamel surfaces with two bonding systems (20 specimens in each group). Bond strengths to enamel surfaces were measured at a cross-head speed of 1 mm/min. The data were analyzed by ANOVA and Duncan Tests. To examine interface composite resin/enamel surfaces at scanning electron microscopy, remaining 6 teeth were used. Fracture analysis was performed using an optical stereomicroscope.Results: Bond strengths values of Solid Bond were significantly higher than bond strengths of Clearfil SE Bond for all types of enamel (P<.05). Shear bond strength values obtained with Solid Bond (three step system) to three types of enamel surfaces [air-abraded (30.25±7.00 MPa), bur-abraded (29.07±3.53 MPa), control (31.74±7.35 MPa)] were close to each other (P>.05). The macroscopic mode of failures for bonding systems, SB and SE Bond appeared to be adhesive and cohesive in nature.Conclusions: In order to get better bond strength values with self etching systems, it is advisable to prepare enamel surfaces with bur or air abrasion, but it enamel preparation is not necessary for three step systems. (Eur J Dent 2008;2:167-175)


2001 ◽  
Vol 29 (5) ◽  
pp. 333-340 ◽  
Author(s):  
A.-K. Johansson ◽  
R. Sorvari ◽  
D. Birkhed ◽  
J.H. Meurman

2020 ◽  
Vol 10 (12) ◽  
pp. 4093
Author(s):  
Lidia Fanfoni ◽  
Fulvia Costantinides ◽  
Federico Berton ◽  
Giulio Marchesi ◽  
Leila Polo ◽  
...  

Severe dental erosion could be one of the complications of gastroesophageal reflux disease and food disorders such as bulimia nervosa. The aim of the present in vitro study was to evaluate the remineralization efficiency and the erosion prevention capability obtained by combining the use of Elmex Erosion Protection (Elm-EP) and GC Tooth Mousse (GC-TM) in cases of strongly eroded enamel surfaces. Twenty-four specimens of bovine tooth were superficially treated with hydrochloric acid to mimic severe erosion conditions. The specimens were divided into 3 groups accordingly to a different remineralizing treatment for 15 days: immersion in artificial remineralizing saliva, brushing with Elm-EP and brushing with Elm-EP in association with a daily application of GC-TM paste. After the remineralization procedures, the specimens were exposed to a treatment with acid. The effectiveness of the treatments were assessed by surface profilometric analysis and scanning electron microscopy at four different steps. Furthermore, the quantity of the Ca2+ lost during erosion was determined. The combined action of Elm-EP and GC-TM led to a 50% roughness decrease of critically eroded dental surfaces. The tandem use of Elmex Erosion Protection and GC Tooth Mousse resulted a promising protecting strategy for the prevention of the dental mineral loss.


Sign in / Sign up

Export Citation Format

Share Document