scholarly journals Pengenalan Wajah Menggunakan Pembelajaran Mesin Berdasarkan Ekstraksi Fitur Pada Gambar Wajah Berkualitas Rendah

2021 ◽  
Vol 2 (2) ◽  
pp. 95-103
Author(s):  
Siti Khotimatul Wildah ◽  
Sarifah Agustiani ◽  
Ali Mustopa ◽  
Nanik Wuryani ◽  
Hendri Mahmud Nawawi ◽  
...  

Wajah merupakan bagian dari sistem biometric dimana wajah manusia memiliki bentuk dan karakteristik yang berbeda antara satu dengan lainnya sehingga wajah dapat dijadikan sebagai alternatif pengamanan suatu sistem. Proses pengenalan wajah didasarkan pada proses pencocokan dan perbandingan citra yang dimasukan dengan citra yang telah tersimpan di database. Akan tetapi pengenalan wajah menjadi permasalahan yang cukup menantang dikarenakan illuminasi, pose dan ekspresi wajah serta kualitas citra. Oleh sebab itu pada penelitian ini bertujuan untuk melakukan pengenalan wajah dengan menggunakan metode machine learning seperti Logistic Regression (LR), Linear Discriminant Analysis (LDA), Decision Tree Classifier, Random Forest Classifier (RF), Gaussian NB, K Neighbors Classifier (KNN) dan Support Vector Machine (SVM) dan beberapa metode ekstraksi fitur Hu-Moment, HOG dan Haralick pada dataset Yale Face. Berdasarkan pengujian yang dilakukan metode ekstraksi fitur gabungan Hu-Moment, HOG dan Haralick dengan algoritma Linear Discriminant Analysis (LDA) menghasilkan nilai akurasi tertinggi sebesar 79,71% dibandingkan dengan metode ekstraksi fitur dan algoritma klasifikasi lainnya.

2020 ◽  
Vol 32 (02) ◽  
pp. 2050010
Author(s):  
Fatma EL-Zahraa M. Labib ◽  
Islam A. Fouad ◽  
Mai S. Mabrouk ◽  
Amr A. Sharawy

A brain–computer interface (BCI) can be used for people with severe physical disabilities such as ALS or amyotrophic lateral sclerosis. BCI can allow these individuals to communicate again by creating a new communication channel directly from the brain to an output device. BCI technology can allow paralyzed people to share their intent with others, and thereby demonstrate that direct communication from the brain to the external world is possible and that it might serve useful functions. BCI systems include machine learning algorithms (MLAs). Their performance depends on the feature extraction and classification techniques employed. In this paper, we propose a system to exploit the P300 signal in the brain, a positive deflection in event-related potentials. The P300 signal can be incorporated into a spelling device. There are two benefits behind this kind of research. First of all, this work presents the research status and the advantages of communication via a BCI system, especially the P300 BCI system for disordered people, and the related literature review is presented. Secondly, the paper discusses the performance of different machine learning algorithms. Two different datasets are presented: the first dataset 2004 and the second dataset 2019. A preprocessing step is introduced to the subjects in both datasets first to extract the important features before applying the proposed machine learning methods: linear discriminant analysis (LDA I and LDA II), support vector machine (SVM I, SVM II, SVM III, and SVM IV), linear regression (LREG), Bayesian linear discriminant analysis (BLDA), and twin support vector machine (TSVM). By comparing the performance of the different machine learning systems, in the first dataset it is found that BLDA and SVMIV classifiers yield the highest performance for both subjects “A” and “B”. BLDA yields 98% and 66% for 15th and 5th sequences, respectively, whereas SVMIV yields 98% and 54.4% for 15th and 5th sequences, respectively. While in the second dataset, it is obvious that BLDA classifier yields the highest performance for both subjects “1” and “2”, it achieves 90.115%. The paper summarizes the P300 BCI system for the two introduced datasets. It discusses the proposed system, compares the classification methods performances, and considers some aspects for the future work to be handled. The results show high accuracy and less computational time which makes the system more applicable for online applications.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


Cutting edge improved techniques gave greater values to Artificial Intelligence (AI) and Machine Learning (ML) which are becoming a part of interest rapidly for numerous types of researches presently. Clustering and Dimensionality Reduction Techniques are one of the trending methods utilized in Machine Learning these days. Fundamentally clustering techniques such as K-means and Hierarchical is utilized to predict the data and put it into the required group in a cluster format. Clustering can be utilized in recommendation frameworks, examination of clients related to social media platforms, patients related to particular diseases of specific age groups can be categorized, etc. While most aspects of the dimensionality lessening method such as Principal Component Analysis and Linear Discriminant Analysis are a bit like the clustering method but it decreases the data size and plots the cluster. In this paper, a comparative and predictive analysis is done utilizing three different datasets namely IRIS, Wine, and Seed from the UCI benchmark in Machine learning on four distinctive techniques. The class prediction analysis of the dataset is done employing a flask-app. The main aim is to form a good clustering pattern for each dataset for given techniques. The experimental analysis calculates the accuracy of the shaped clusters used different machine learning classifiers namely Logistic Regression, K-nearest neighbors, Support Vector Machine, Gaussian Naïve Bayes, Decision Tree Classifier, and Random Forest Classifier. Cohen Kappa is another accuracy indicator used to compare the obtained classification result. It is observed that Kmeans and Hierarchical clustering analysis provide a good clustering pattern of the input dataset than the dimensionality reduction techniques. Clustering Design is well-formed in all the techniques. The KNN classifier provides an improved accuracy in all the techniques of the dataset.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Heping Li ◽  
Yu Ren ◽  
Fan Yu ◽  
Dongliang Song ◽  
Lizhe Zhu ◽  
...  

To facilitate the enhanced reliability of Raman-based tumor detection and analytical methodologies, an ex vivo Raman spectral investigation was conducted to identify distinct compositional information of healthy (H), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Then, principal component analysis-linear discriminant analysis (PCA-LDA) and principal component analysis-support vector machine (PCA-SVM) models were constructed for distinguishing spectral features among different tissue groups. Spectral analysis highlighted differences in levels of unsaturated and saturated lipids, carotenoids, protein, and nucleic acid between healthy and cancerous tissue and variations in the levels of nucleic acid, protein, and phenylalanine between DCIS and IDC. Both classification models were principal component analysis-linear discriminant analysis to be extremely efficient on discriminating tissue pathological types with 99% accuracy for PCA-LDA and 100%, 100%, and 96.7% for PCA-SVM analysis based on linear kernel, polynomial kernel, and radial basis function (RBF), respectively, while PCA-SVM algorithm greatly simplified the complexity of calculation without sacrificing performance. The present study demonstrates that Raman spectroscopy combined with multivariate analysis technology has considerable potential for improving the efficiency and performance of breast cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document