scholarly journals Analytical and Numerical Solutions to Selected Research Problems in Geomechanics and Geohydraulics

2021 ◽  
Vol 16 ◽  
pp. 222-231
Author(s):  
Sudip Basack ◽  
Ghritartha Goswami ◽  
Sanjay Nimbalkar

Geomechanical and geohydraulic engineering is a promising study area with several emerging research concerns. Most of such problems requires advanced level of mathematics to arrive at specific solutions. A wide range of approaches includes several analytical and numerical techniques for better understanding of such problems. In this paper, a few selected research problems are identified, and their solution techniques are demonstrated. The specific areas relevant to such problems are soil-structure interaction, ground improvement and groundwater hydraulics. This paper presents the problem identification, their mathematical solutions and results as well as pertinent analyses and useful interpretations to practice.

2020 ◽  
Vol 5 (11) ◽  
pp. 90
Author(s):  
Davide Forcellini

The assessment of bridge functionality during earthquakes is fundamental in the evaluation of emergency response and socio-economic recovery procedures. In this regard, resilience may be considered a key parameter for decision-making procedures such as post-hazard event mitigations and recovery investments on bridges. The paper proposes a case study of a bridge configuration subjected to seismic hazard and aims to consider the effects of the soil–structure interaction on the recovery to various levels of pre-earthquake functionality. The principal outcome of the paper consists of calculating resilience as a readable finding that may have many applications for a wide range of stakeholders, such as bridge owners, transportation authorities and public administrators who can apply the outcomes in the assessment of the best recovery techniques and solutions.


2021 ◽  
Vol 9 (1) ◽  
pp. 104-111
Author(s):  
Omer Awad Ibnouf ◽  
Eltayeb Hassan Onsa

Integral Abutment Bridges (IABs) are joint-less bridges whereby the deck is monolithic with the abutment walls. IABs are outperforming their non-integral counterparts in economy and safety. Thermal effects introduce significantly complex and nonlinear soil-structure interaction into the response of abutment walls and piles of the IB. This paper carried out comprehensive study on voided slab system with five spans bridge each span is 17m long. The bridge has been modelled using SAP software. The abutments and pile foundations are modeled taking into consideration the soil-structure interaction. The study covered a design uniform temperature change of (10, 20, 30, 40 and 50) °C. To gain a better understanding of the mechanism of load transfer due to thermal actions, a 3D frame anal¬ysis is carried out on the above mentioned IABs. The results showed wide range of different linear and lightly non-linear relationships between temperature range, deformations and moments. The paper highlighted the serious effect of the deformations resulting from the repeated temperature change which causes drop in soil or bombing at the abutments ~ embankment contact zone.  


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 72
Author(s):  
Muhammad Rizwan Riaz ◽  
Hiroki Motoyama ◽  
Muneo Hori

Recent achievement of research on soil-structure interaction (SSI) is reviewed, with a main focus on the numerical analysis. The review is based on the continuum mechanics theory and the use of high-performance computing (HPC) and clarifies the characteristics of a wide range of treatment of SSI from a simplified model to a high fidelity model. Emphasized is that all the treatment can be regarded as the result of the mathematical approximations in solving a physical continuum mechanics problem of a soil-structure system. The use of HPC is inevitable if we need to obtain a solution of higher accuracy and finer resolution. An example of using HPC for the analysis of SSI is presented.


Sign in / Sign up

Export Citation Format

Share Document