scholarly journals Stability Analysis of Pressure and Penetration Rate in Rotary Drilling System

2022 ◽  
Vol 20 ◽  
pp. 324-330
Author(s):  
Rhouma Mlayeh

The purpose of this paper is to stabilize the annular pressure profile throughout the wellbore continuously while drilling. A new nonlinear dynamical system is developed and a controller is designed to stabilize the annular pressure and achieve asymptotic tracking by applying feedback control of the main pumps. Hence, the paper studies the control design for the well known Managed Pressure Drilling system (MPD). MPD provides a closedloop drilling process in which pore pressure, formation fracture pressure, and bottomhole pressure are balanced and managed at the surface. Although, responses must provide a solution for critical downhole pressures to preserve drilling efficiency and safety. Our MPD scheme is elaborated in reference to a nontrivial backstepping control procedure and the effectiveness of the proposed control laws are shown by simulations.

2010 ◽  
Vol 20 (04) ◽  
pp. 1027-1040 ◽  
Author(s):  
PIETRO ALTIMARI ◽  
ERASMO MANCUSI ◽  
MARIO DI BERNARDO ◽  
LUCIA RUSSO ◽  
SILVESTRO CRESCITELLI

Bifurcation tailoring is a method developed to design control laws modifying the bifurcation diagram of a nonlinear dynamical system to a desired one. In its original formulation, this method does not account for the possible presence of constraints on state and/or manipulated inputs. In this paper, a novel formulation of the bifurcation tailoring method overcoming this limitation is presented. In accordance with the proposed approach, a feedforward control law generating an optimal bifurcation diagram is computed by constrained minimization of an objective functional. Then, a feedback control system enforcing stability of the computed equilibrium branch is designed. In this context, bifurcation analysis is exploited to select feedback controller parameters ensuring desired output behavior and, at the same time, preventing the occurrence of multistability. The method is numerically validated on the problem of tailoring the bifurcation diagram of an exothermic chemical reactor.


Author(s):  
Chafiaa Mendil ◽  
Madjid Kidouche ◽  
Mohamed Zinelabidine Doghmane

During the drilling process, the drilling system devices can be exposed to several types of phenomena incited by lateral, axial, and torsional vibrations. The latter can lead to severe damages if they are not efficiently controlled and quickly mitigated. This research work is focused on the torsional vibrations, which are stimulated by the nonlinear dynamical interaction between the geological rocks and the drill bit. Wherein, a model with three degrees of freedom was designed to demonstrate the severity of the stick-slip phenomenon as consequence of torsional vibrations. The main objective of this study was to design a robust controller based on hybridizing a conventional PID controller with sliding mode approach in order to mitigate rapidly the torsional vibrations. Moreover, a comparative study between PI, PID and sliding mode controllers allowed us to emphasize the effectiveness of the new hybrid controller and improve the drilling system performances. Furthermore, the chattering phenomenon in the sliding surface was overcome by using the saturation function rather than the sign function. The obtained results proved the usefulness of the proposed controller in suppressing the stick-slip phenomenon for smart industrial drilling systems.


2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1794
Author(s):  
Hilmy Awad ◽  
Ehab H. E. Bayoumi ◽  
Hisham M. Soliman ◽  
Michele De Santis

This paper introduces a new ellipsoidal-based tracker design to control a grid-connected hybrid direct current/alternating current (DC/AC) microgrid (MG). The proposed controller is robust against both parameters and load variations. The studied hybrid MG is modelled as a nonlinear dynamical system. A linearized model around an operating point is developed. The parameter changes are modelled as norm-bounded uncertainties. We apply the new extended version of the attractive (or invariant) ellipsoid for this tracking problem. Convex optimization is used to obtain the region’s minimal size where the tracking error between the state trajectories and the reference states converges. The sufficient conditions for stability are derived and solved based on linear matrix inequalities (LMIs). The proposed controller’s validity is shown via simulating the hybrid MG with various operational scenarios. In each scenario, the performance of the controller is compared with a recently proposed sliding mode controller. The comparison clearly illustrates the superiority of the developed controller in terms of transient and steady-state responses.


Sign in / Sign up

Export Citation Format

Share Document