Multiscale procedure of numerical assessment of damage rate and technical state of structures from fibrous materials

2021 ◽  
Vol 2021 (3) ◽  
pp. 14-18
Author(s):  
O.S. Milenin ◽  
◽  
O.A. Velikoivanenko ◽  
G.P. Rozynka ◽  
N.I. Pivtorak ◽  
...  
2015 ◽  
Vol 5 (1) ◽  
pp. 513-522
Author(s):  
Jean-Claude N'ZI ◽  
Lassina FONDIO ◽  
Mako Francois De Paul N’GBESSO ◽  
Andé Hortense DJIDJI ◽  
Christophe KOUAME

Thirty accessions of tomato including twenty eight introduced accessions from The World Vegetable Center-AVRDC and as controls, two commercial varieties Mongal and Calinago, were assessed for agronomic performances at the Experimentation and Production Station of Angud dou of the National Agronomic Research Centre (CNRA) located in the South of Cote d Ivoire. The trial was arranged in a randomized block with three replications. The following parameters were determined at vegetative development stage: plant height at flowering stage, susceptibility of accessions to diseases, day to 50% flowering and day of first harvest, production duration, fruit length, fruit diameter, total number of fruits, number of fruits per plant, potential yield, net yield and fruit damage rate. Results showed that the commercial variety Mongal, with a potential yield of 15.9 and a net yield of 13.1 t ha-1, was the most productive. All the introduced accessions from AVRDC recorded the lowest potential yields from 2.2 to 9.7 t ha-1, and net yields from 1.7 to 8.6 t ha-1. In addition, accessions WVCT8, FMTT847 and WVCT13 were severely infested by bacterial wilt. The reduction of the net yield of tomato accessions resulted in the high fruit damage rates. For the future tomato breeding work, it would be appropriate to introduce into the trials bacterial diseases tolerant varieties. Moreover, some studies could be undertaken to determine the nature of the bacteria involved in the plant wilting and to find out the causal agent of the tomato plants burning at the fructification stage reducing the harvest duration.


2020 ◽  
Author(s):  
R. Kevin Tindell ◽  
Lincoln Busselle ◽  
Julianne Holloway

<div>Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials and are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues. <br></div>


2020 ◽  
Author(s):  
R. Kevin Tindell ◽  
Lincoln Busselle ◽  
Julianne Holloway

<div>Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials and are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues. <br></div>


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


2020 ◽  
Vol 2020 (10) ◽  
pp. 37-41
Author(s):  
Sergey Bulatov

The effectiveness of manufacturing equipment use taking into account its productivity and reliability for faulty parts of transmission units in municipal buses is estimated. The on-line mode is the most effective method of control allowing the tracking of the processes of technical state changes in municipal buses. As a result of monitoring there were obtained selected data on PAZ-3205 municipal bus operated under winter conditions in the city of Ohrenburg. During the trip there was recorded 39.1 l/100km petrol consumption. The residual life of the PAZ-3205 municipal bus was 1800km.


Sign in / Sign up

Export Citation Format

Share Document