scholarly journals 3-Dimensional Underwater Explosion Shock Response Analysis of a Floating Structure considering Cavitation Effects

2003 ◽  
Vol 40 (6) ◽  
pp. 1-11 ◽  
Author(s):  
Hiroaki Eto ◽  
Osamu Saijo ◽  
Koichi Maruyoshi

Since Japan is limited in area, the effective ocean space development is very important and urgent subject. Concerning a research and development of effective ocean space utilization, the MEGA-FLOAT was one of the most famous projects in Japan that had the purpose of a floating airport construction, and the numerous R & D were conducted aiming at actual construction and those results were reported in respect of conceptual design, construction method, fluid analysis, structural dynamic analysis, environment issue etc. However, the end was faced without achieving it, it can be said that the effect is large. After the end of that project, the realistic, small or medium size structure began to be paid to attention. As the good example of such a kind floating structure, floating pier and disaster prevention base having an advantage against an earthquake, floating restaurant etc. were constructed shown in Figure 1. In this paper, assuming the small size floating restaurant, the wave response analysis was studied, and the habitability of that structure was evaluated from the response calculation results. Concretely, the floating base part; barge type of the restaurant building was designed by the Class NK (Rules and Guidance for the survey and construction of steel ships, Part Q Steel barges). The calculation model consists of a three-story building and the base, that floating artificial base supporting the building was assumed by the elastic plate structural system, and also that building was of the frame structure system. In order to structural analysis, the restaurant model of two different structural systems was united into one body system. In this paper, it is called the hybrid structural system. Fluid effect was analyzed as the fluid-structural interaction problem. Concretely, the Boundary Integral Equation Method (BIEM) was used here, and the wave response calculation was demonstrated by that forces. The evaluation of habitability of the restaurant in vertical and horizontal motion was examined by the diagram proposed from our research results.


2013 ◽  
Vol 43 ◽  
pp. 112-130 ◽  
Author(s):  
Constantine Michailides ◽  
Eva Loukogeorgaki ◽  
Demos C. Angelides

2014 ◽  
Vol 6 (5) ◽  
pp. 292-298
Author(s):  
Hamid Masaeli ◽  
Amir B. Hami ◽  
Saman Musician ◽  
Faramarz Khoshnoudian

Author(s):  
Yoshiyasu Watanabe ◽  
Koichiro Yoshida

It is desired instead of welding to develop a mechanical connector, which may work well to connect two units at the site in spite of circumstances of some extent of relative motions between two units caused by waves. One of the authors proposed a new type of mechanical connector, which is based on an idea of three bodies problem instead of usual mechanical connectors (two bodies problem). In this paper, wave exciting tests of a semisubmersible floating structure model with the proposed mechanical connectors of 1/100 scale and the numerical analysis using hydroelastic response analysis program VODAC are carried out and wave response characteristics of the semisubmersible floating structure model with the mechanical connectors and its feasibility are reported.


2014 ◽  
Vol 983 ◽  
pp. 400-403
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Ze Yin He

The shock spectrum of gearbox was gotten according to German specification. And the equivalent time-domain acceleration curve was converted from shock spectrum. After the dynamic finite element model of entire gearbox was established by using the truss element, spring element and tetrahedral element, the shock response including the vibration velocity, acceleration and dynamic stress of gearbox subjected to the acceleration shock excitation were simulated. At last, the anti-shock performance of gearbox was analyzed combining with the strength criterion.


2011 ◽  
Vol 58-60 ◽  
pp. 2534-2539 ◽  
Author(s):  
Yan Qing Wang ◽  
Rong Yu ◽  
Rong Ling Chen

By a transfer matrix-Newmark formulation iteration method, shock response analysis in time domain was performed for a propulsion shaft subjected to base-transferred shock excitations. In order to eliminate the numerical instability of TMT, the transfer vector is used, instead of the traditional one. Influences of gyroscopic effect and initial stress on response were investigated. Main conclusions are that gyroscopic effect has no obvious effect on shock response. Initial stress increases the total shock response, but the total response isn’t equal to the absolute sum of initial stress and shock excitations acting alone. Both ends of the shaft, that are propeller and thrust bearing locations, are weaker to bear shock excitations. Maximum amplitude of response occurs at the propeller location.


Sign in / Sign up

Export Citation Format

Share Document