Shock Response Analysis of Marine Gearbox

2014 ◽  
Vol 983 ◽  
pp. 400-403
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Ze Yin He

The shock spectrum of gearbox was gotten according to German specification. And the equivalent time-domain acceleration curve was converted from shock spectrum. After the dynamic finite element model of entire gearbox was established by using the truss element, spring element and tetrahedral element, the shock response including the vibration velocity, acceleration and dynamic stress of gearbox subjected to the acceleration shock excitation were simulated. At last, the anti-shock performance of gearbox was analyzed combining with the strength criterion.

2014 ◽  
Vol 602-605 ◽  
pp. 135-138
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Ze Yin He

The dynamic finite element model of entire gearbox, including gears, shafts, bearings and gearbox housing was established by using the truss element, spring element and tetrahedral element at first. Then the shock spectrum of GWC6066 gearbox was gotten according to German specification BV043/85. After the shock spectrum converted into equivalent time-domain acceleration curve, the vibration velocity, vibration acceleration and dynamic stress of GWC6066 gearbox under the double half-sine acceleration shock excitation were simulated. At last, the shock resistance performance of gearbox was analyzed combining with the strength criterion.


2014 ◽  
Vol 607 ◽  
pp. 405-408 ◽  
Author(s):  
Wen Liu ◽  
Teng Jiao Lin ◽  
Quan Cheng Peng

The gear-shaft-bearing-housing coupled finite element model of marine gearbox was established by using the truss element, the spring element and the tetrahedral element. The modal of gearbox was analyzed by using the ANSYS software. Then through the experimental modal analysis, the natural frequencies of gearbox are obtained. Compare the experimental results with the numerical results, it shows good agreement.


2012 ◽  
Vol 166-169 ◽  
pp. 2202-2208
Author(s):  
Ye Guan ◽  
Xin Liang Jiang ◽  
Yan Ping Zhang

In order to understand the seismic performance of the large complex structure with multi-storey basement, the structure-pile-soil finite element model of a typical cross sections of one transfer station in a transportation junction were established by using the ANSYS software. The time history analysis was adopted, and the seismic responds of the whole system under the seismic load was analyzed, and some rules were attained. Comparing the result of the seismic responds with the rigid foundation model which the soil around the underground structure simulated by spring element, and some salutary conclusions are attained.


2011 ◽  
Vol 255-260 ◽  
pp. 1077-1081
Author(s):  
Bing Lai Zhan ◽  
Yue Xu ◽  
Zhi Xu ◽  
Xiqin Yang

In view that dynamics research for self-anchored suspension and cable-stayed combination system bridge lags behind the practical application, this thesis analyzed its dynamic properties and seismic responses. By means of constructing a dynamic finite element model of the bridge for the dynamic properties and seismic response analysis, the thesis discovered the dynamic properties and the seismic responses laws of self-anchored suspension and cable-stayed combination system bridge. The dynamic finite element model was constructed based on the dynamic analysis theory and method, under the background of the first self-anchored suspension and cable-stayed combination system bridge in the world, and it was verifyed by on-site vibration test. The dynamic properties and the seismic responses laws provides a valuable reference for the design and maintenance of this type of bridge.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


Author(s):  
Timothy C. Allison ◽  
J. Jeffrey Moore

The effectiveness of fatigue and life prediction methods depends heavily on accurate knowledge of the static and dynamic stresses acting on a structure. Although stress fields may be calculated from the finite element shape functions if a finite element model is constructed and analyzed, in many cases the cost of constructing and analyzing a finite element model is prohibitive. Modeling errors can severely affect the accuracy of stress simulations. This paper presents an empirical method for predicting a transient dynamic stress response of a structure based on measured load and strain data that can be collected during vibration tests. The method applies the proper orthogonal decomposition to a measured data set to filter noise and reduce the size of the identification problem and then employs a matrix deconvolution technique to decouple and identify the reduced coordinate impulse response functions for the structure. The method is applied to simulation data from an axial compressor blade model and produces accurate stress predictions compared to finite element results.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


Sign in / Sign up

Export Citation Format

Share Document