scholarly journals Medical Image Processing, Human Face Classification, Face Recognition and Medical Imaging: Performance Evolution Histogram of Orientation Gradients

2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


2021 ◽  
Author(s):  
Radwan Qasrawi ◽  
Diala Abu Al-Halawa ◽  
Omar Daraghmeh ◽  
Mohammad Hjouj ◽  
Rania Abu Seir

Medical image segmentation and classification algorithms are commonly used in clinical applications. Several automatic and semiautomatic segmentation methods were used for extracting veins and arteries on transverse and longitudinal medical images. Recently, the use of medical image processing and analysis tools improved giant cell arteries (GCA) detection and diagnosis using patient specific medical imaging. In this chapter, we proposed several image processing and analysis algorithms for detecting and quantifying the GCA from patient medical images. The chapter introduced the connected threshold and region growing segmentation approaches on two case studies with temporal arteritis using ultrasound (US) and magnetic resonance imaging (MRI) imaging modalities extracted from the Radiopedia Dataset. The GCA detection procedure was developed using the 3D Slicer Medical Imaging Interaction software as a fast prototyping open-source framework. GCA detection passes through two main procedures: The pre-processing phase, in which we improve and enhances the quality of an image after removing the noise, irrelevant and unwanted parts of the scanned image by the use of filtering techniques, and contrast enhancement methods; and the processing phase which includes all the steps of processing, which are used for identification, segmentation, measurement, and quantification of GCA. The semi-automatic interaction is involved in the entire segmentation process for finding the segmentation parameters. The results of the two case studies show that the proposed approach managed to detect and quantify the GCA region of interest. Hence, the proposed algorithm is efficient to perform complete, and accurate extraction of temporal arteries. The proposed semi-automatic segmentation method can be used for studies focusing on three-dimensional visualization and volumetric quantification of Giant Cell Arteritis.


2008 ◽  
Author(s):  
Jie Tian ◽  
Yakang Dai ◽  
Kexin Deng ◽  
Jian Zheng ◽  
Xiaoqian Dai

This paper introduces an integrated 3D medical image processing and analyzing software platform which is open interface and freely available. The platform consists of the Medical Imaging Toolkit (MITK) and the 3-Dimensional Medical Image Processing and Analyzing System (3DMed). MITK is an algorithm toolkit for research and software development, while 3DMed is a MITK based application system with a plug-in framework. The overall architecture and main capabilities of the platform are described in detail. Presented evaluations demonstrate that the platform can benefit the development of computer assisted intervention systems.


2017 ◽  
Vol 5 (4RACSIT) ◽  
pp. 21-29
Author(s):  
Shruthishree ◽  
Harshvardhan Tiwari

Biomedical image processing has experienced dramatic expansion, and has been an interdisciplinary research field attracting expertise from applied mathematics, computer sciences, engineering, statistics, physics, biology and medicine. Computer-aided diagnostic processing has already become an important part of clinical routine. Accompanied by a rush of new development of high technology and use of various imaging modalities, more challenges arise; for example, how to process and analyze a significant volume of images so that high quality information can be produced for disease diagnoses and treatment. The principal objectives of this course are to provide an introduction to basic concepts and techniques for medical image processing and to promote interests for further study and research in medical imaging processing.The rapid progress of medical science and the invention of various medicines have benefited mankind and the whole civilization. Modern science also has been doing wonders in the surgical field. But, the proper and correct diagnosis of diseases is the primary necessity before the treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The medical image plays an important role in clinical diagnosis and therapy of doctor and teaching and researching etc. Medical imaging is often thought of as a way to represent anatomical structures of the body with the help of X-ray computed tomography and magnetic resonance imaging. But often it is more useful for physiologic function rather than anatomy. With the growth of computer and image technology medical imaging has greatly influenced medical field. As the quality of medical imaging affects diagnosis the medical image processing has become a hotspot and the clinical applications wanting to store and retrieve images for future purpose needs some convenient process to store those images in details.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Sign in / Sign up

Export Citation Format

Share Document