DIFFERENTIAL EQUATIONS OF EQUILIBRIUM OF IDEALLY ELASTOPLASTIC CONTINUOUS MEDIUM FOR PLANE ONE-DIMENSIONAL DEFORMATION IN APPROXIMATION OF CLOSING EQUATIONS BY BIQUADRATIC FUNCTIONS

2021 ◽  
Vol 295 (2) ◽  
pp. 37-45
Author(s):  
S.V. Bakushev ◽  

The present article considers the construction of differential equations of equilibrium of geometrically and physically nonlinear ideally elastoplastic in relation to shear deformations of continuous medium under conditions of one-dimensional plane deformation, when the diagrams of volumetric and shear deformation are approximated by biquadratic functions. The construction of physical dependencies is based on calculating the secant moduli of volumetric and shear deformation. When approximating the graphs of the volumetric and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volumetric expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volumetric and shear deformation, the secant shear modulus is a fractional (rational) function of the shear strain intensity; the secant modulus of volumetric expansion-compression is a fractional (rational) function of the first invariant of the strain tensor. Based on the assumption of independence, generally speaking, from each other of the volumetric and shear deformation diagrams, five main cases of physical dependences are considered, depending on the relative position of the break points of the graphs of the diagrams volumetric and shear deformation. On the basis of received physical equations, differential equations of equilibrium in displacements for continuous medium are derived under conditions of plane one-dimensional deformation. Differential equations of equilibrium in displacements constructed in the present article can be applied in determining stress and strain state of geometrically and physically nonlinear ideally elastoplastic in relation to shear deformations of continuous medium under conditions of plane one-dimensional deformation, closing equations of physical relations for which, based on experimental data, are approximated by biquadratic functions.

Author(s):  
Sergey V. Bakushev

Problems of differential equations construction of equilibrium of a geometrically and physically nonlinear continuous medium under conditions of one-dimensional plane deformation are considered, when the diagrams of volumetric and shear deformation are approximated by quadratic functions. The construction of physical dependencies is based on calculating the secant moduli of volumetric and shear deformation. When approximating the graphs of the volumetric and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations, the secant modulus of volumetric expansion - contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volumetric and shear deformation, the secant shear modulus is a fractional (rational) function of the shear strain intensity, the secant modulus of volumetric expansion - compression is a fractional (rational) function of the first invariant of the strain tensor. Based on the assumption of independence, generally speaking, from each other of the volumetric and shear deformation diagrams, six main cases of physical dependences are considered, depending on the relative position of the break points of the graphs of the diagrams volumetric and shear deformation, each approximated by two parabolas. The differential equations of equilibrium in displacements constructed in the article can be applied in determining the stressed and deformed state of a continuous medium under conditions of one-dimensional plane deformation, the closing equations of physical relations for which, constructed on the basis of experimental data, are approximated by biquadratic functions.


Author(s):  
S.V. Bakushev ◽  

Abstract. The article considers the construction of differential equations of equilibrium in displacements for plane deformation of elastic perfectly plastic regarding shear deformations continuous medium and nonlinearly elastic continuous medium with respect to volumetric deformations with bilinear approximation of the closing equations, both regarding and regardless geometrical nonlinearity in a cylindrical coordinate system. Nonlinear diagrams of volumetric and shear deformation are approximated by bilinear functions. Proceeding from the assumption of independence, generally speaking, of volume and shear deformation from each other, five main cases of physical dependencies are considered, depending on the relative position of the break points of bilinear diagrams of volume and shear deformation. The construction of bilinear physical dependencies is based on the calculation of the secant moduli of volumetric and shear deformation. In this case, in the first section of the diagrams, the secant modulus of both volumetric and shear deformation is constant, while in the second section of the diagrams, the secant modulus of volumetric deformation is a function of volumetric deformation, and the secant shear modulus is a function of the intensity of shear deformations. Substituting the corresponding bilinear physical relations into the differential equations of equilibrium of a continuous medium, written both regardless and regarding geometrical nonlinearity, the resolving differential equations of equilibrium in displacements for plane deformation in a cylindrical coordinate system are received. The received differential equations of equilibrium in displacements in cylindrical coordinates can be applied in determining the stress-strain state of elastic perfectly plastic with respect to shear deformations continuous medium and nonlinearly elastic with respect to volumetric deformations continuous medium under conditions of plane deformation, both regarding and regardless geometrical nonlinearity, physical relations for which are approximated by bilinear functions.


Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


2020 ◽  
pp. 108128652097275
Author(s):  
Miroslav Šilhavý

The paper presents a coordinate-free analysis of deformation measures for shells modeled as 2D surfaces. These measures are represented by second-order tensors. As is well-known, two types are needed in general: the surface strain measure (deformations in tangential directions), and the bending strain measure (warping). Our approach first determines the 3D strain tensor E of a shear deformation of a 3D shell-like body and then linearizes E in two smallness parameters: the displacement and the distance of a point from the middle surface. The linearized expression is an affine function of the signed distance from the middle surface: the absolute term is the surface strain measure and the coefficient of the linear term is the bending strain measure. The main result of the paper determines these two tensors explicitly for general shear deformations and for the subcase of Kirchhoff-Love deformations. The derived surface strain measures are the classical ones: Naghdi’s surface strain measure generally and its well-known particular case for the Kirchhoff-Love deformations. With the bending strain measures comes a surprise: they are different from the traditional ones. For shear deformations our analysis provides a new tensor [Formula: see text], which is different from the widely used Naghdi’s bending strain tensor [Formula: see text]. In the particular case of Kirchhoff–Love deformations, the tensor [Formula: see text] reduces to a tensor [Formula: see text] introduced earlier by Anicic and Léger (Formulation bidimensionnelle exacte du modéle de coque 3D de Kirchhoff–Love. C R Acad Sci Paris I 1999; 329: 741–746). Again, [Formula: see text] is different from Koiter’s bending strain tensor [Formula: see text] (frequently used in this context). AMS 2010 classification: 74B99


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


Astrophysics ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 316-321 ◽  
Author(s):  
D. M. Sedrakian ◽  
A. Zh. Khachatrian

Author(s):  
Sébastien Neukirch ◽  
Basile Audoly

Elastic ribbons are elastic structures whose length-to-width and width-to-thickness aspect ratios are both large. Sadowsky proposed a one-dimensional model for ribbons featuring a nonlinear constitutive relation for bending and twisting: it brings in both rich behaviours and numerical difficulties. By discarding non-physical solutions to this constitutive relation, we show that it can be inverted; this simplifies the system of differential equations governing the equilibrium of ribbons. Based on the inverted form, we propose a natural regularization of the constitutive law that eases the treatment of singularities often encountered in ribbons. We illustrate the approach with the classical problem of the equilibrium of a Möbius ribbon, and compare our findings with the predictions of the Wunderlich model. Overall, our approach provides a simple method for simulating the statics and the dynamics of elastic ribbons.


Sign in / Sign up

Export Citation Format

Share Document