volumetric expansion
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 60)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 960 (1) ◽  
pp. 012014
Author(s):  
P Punov ◽  
M Niculae ◽  
A Clenci ◽  
S. Mihalkov ◽  
V Iorga-Siman ◽  
...  

Abstract The article presents the results of a 1D numerical simulation of a spark ignition engine developed to operate in Miller cycle. Miller cycle offers better thermal efficiency compared to Otto cycle due to higher volumetric expansion than compression, which in the current context is of paramount importance. In an engine with fixed geometric compression ratio, Miller cycle operation could be realized by means of either early intake valve closing (EIVC) or late intake valve closing (LIVC). Both cases lead however to a lower volumetric efficiency, thus reducing the indicating mean effective pressure, which in its turn results to a lower power output. The simulation’s aim is not only to assess the impact of implementing the Miller cycle but also to obtain the necessary results for imposing the boundary conditions in a 3D CFD simulation whose purpose is to analyse the influence of the Miller cycle on the internal aerodynamics of the engine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pushkar Prakash Kamble ◽  
Subodh Chavan ◽  
Rajendra Hodgir ◽  
Gopal Gote ◽  
K.P. Karunakaran

Purpose Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for liquids with a specific range of viscosity and surface tension. However, the use of multi-jet for low viscosity fluids like water is not very popular. This paper aims to demonstrate the technique, particularly for the water-ice 3 D printing. 3 D printed ice parts can be used as patterns for investment casting, templates for microfluidic channel fabrication, support material for polymer 3 D printing, etc. Design/methodology/approach Multi-jet ice 3 D printing is a novel technique for producing ice parts by selective deposition and freezing water layers. The paper confers the design, embodiment and integration of various subsystems of multi-jet ice 3 D printer. The outcomes of the machine trials are reported as case studies with elaborate details. Findings The prismatic geometries are realized by ice 3 D printing. The accuracy of 0.1 mm is found in the build direction. The part height tends to increase due to volumetric expansion during the phase change. Originality/value The present paper gives a novel architecture of the ice 3 D printer that produces the ice parts with good accuracy. The potential applications of the process are deliberated in this paper.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012035
Author(s):  
Nontawat Chaiyaocha ◽  
Worasak Sukkabot

Abstract A spin density functional calculations of structural and electronic properties of LiMnO2 doped with several transition metals (Sc, V and Tc) are reported. The physical properties of LiMnO2 material are sensitive with the transition-metal dopants. Transition metal dopants enhance the lattice parameters and volumes, thus increasing the Li diffusion channel. The computations underscore that d orbitals of transition metals are located around the Fermi level. V doping in LiMnO2 demonstrates the enhancement in the electronic conductivity due to the volumetric expansion. Finally, these results deliver a valuable information for the transition-metal doped LiMnO2 cathode materials to improve the performance of lithium batteries.


2021 ◽  
Vol 1192 (1) ◽  
pp. 012021
Author(s):  
D S Abu Bakar ◽  
M G Kutty ◽  
N A Yahya

Abstract Titanium (Ti) is widely known for its good mechanical properties and corrosion resistance. However, it has poor biocompatibility. Hydroxyapatite (HA) is a biocompatible material but has poor mechanical properties. Making Ti-HA composite creates a promising choice of biomaterial in dental and medical applications. However, creating a Ti-HA composite requires sintering at high temperatures which leads to oxidation of Ti. The aim of this study was to reduce the sintering temperature of Ti-HA composite by incorporating 45S5 Bioactive Glass (BG) without compromising the chemical, physical and mechanical properties of the composite. In this study, a Ti-HA-BG composite with wt% of 45-45-10 respectively was produced via powder metallurgy. This was compared with the control composite consisting of 50 wt% Ti- 50 wt% HA. Powders according to the above-mentioned ratio were milled at 200 rpm for 5 hours by using a planetary ball milling machine. Samples were then compacted into cylindrical pellets via uniaxial pressing at 1500 psi and sintered in an atmospheric furnace at 1000 °C, 1100 °C and 1200 °C for 4 hours. Ti-HA and Ti-HA-BG sample characteristics were examined and compared by using Fourier Transformed Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) and X-Ray Diffraction (XRD). The density and volumetric expansion of the composites were also measured and compared. Results from XRD data indicate the reduction of oxidation of Ti and decomposition of HA in Ti-HA-BG composite at lower temperature in comparison to Ti-HA composite. The density of Ti-HA-BG composites are higher compared to Ti-HA composite while the volumetric expansion of Ti-HA-BG composites is lesser than Ti-HA composite. Therefore, BG is a low melting point additive that acts as a good sintering aid to effectively lower the sintering temperature while maintaining the desired properties of initial components.


2021 ◽  
Vol 11 (19) ◽  
pp. 8874
Author(s):  
Amadou Sakhir Syll ◽  
Hiroki Shimokobe ◽  
Toshiyuki Kanakubo

The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the authors investigated bond strength degradation by conducting pull-out tests on concrete specimens, with induced crack width and stirrups ratio being the principal parameters. An expansion agent-filled pipe (EAFP) simulates cracks due to the volumetric expansion of the corroded rebar. One advantage of this method is that it allows one to focus on the single effect of an induced crack. The pull-out tests on 36 specimens show that stirrups’ confinement significantly influences the bond degradation due to induced cracks. The authors proposed an empirical model for the degradation of bond strength, considering the impact of induced crack width. The result shows that the induced crack by EAFP can quantify the exclusive consequence of corrosion on bonds. Furthermore, the coefficient of variation is 12% for specimens without stirrup from Law et al. For specimen without and with stirrup from Lin et al., the coefficients of variation are 14% and 17%. The proposed model can predict the corroded specimen from the literature with reasonable accuracy.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 244
Author(s):  
Xi Zhang ◽  
Jinxuan Zhang ◽  
Bidita Salahuddin ◽  
Shuai Gao ◽  
Shazed Aziz ◽  
...  

Twisted polymer fibre actuators provide high torsional rotation from stimulated volume expansion, induced either by chemical fuelling, thermal stimulation, or electrochemical charging. One key limitation of these actuators is the irreversibility of torsional stroke that limits their feasibility when considering real-life smart applications. Moreover, scaling the torsional stroke of these actuators becomes difficult when these are integrated into practically usable systems such as smart textiles, due to the external and variable opposing torque that is applied by the adjacent non-actuating fibres. Herein, a simple composite type torsional actuator made of hydrogel coated commercial textile cotton multifilament fibre is demonstrated. This novel actuator is of high moisture responsiveness, given that hydrogels are capable of providing huge volume expansion and twisting the overall system can transform the volumetric expansion to fibre untwisting based torsional actuation. Theoretical treatment of torsional actuation is also demonstrated based on the change in torsional stiffness of dry and wet fibres as well as a few externally applied torques. The agreement between experimental measurements and theoretical estimation is found reasonable, and the investigation allows the near-appropriate estimation of torsional stroke before integrating an actuator into a smart system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hesameddin Khosravi ◽  
Steven M. Iannucci ◽  
Suyi Li

Soft pneumatic actuators have become indispensable for many robotic applications due to their reliability, safety, and design flexibility. However, the currently available actuator designs can be challenging to fabricate, requiring labor-intensive and time-consuming processes like reinforcing fiber wrapping and elastomer curing. To address this issue, we propose to use simple-to-fabricate kirigami skins—plastic sleeves with carefully arranged slit cuts—to construct pneumatic actuators with pre-programmable motion capabilities. Such kirigami skin, wrapped outside a cylindrical balloon, can transform the volumetric expansion from pneumatic pressure into anisotropic stretching and shearing, creating a combination of axial extension and twisting in the actuator. Moreover, the kirigami skin exhibits out-of-plane buckling near the slit cut, which enables high stretchability. To capture such complex deformations, we formulate and experimentally validates a new kinematics model to uncover the linkage between the kirigami cutting pattern design and the actuator’s motion characteristics. This model uses a virtual fold and rigid-facet assumption to simplify the motion analysis without sacrificing accuracy. Moreover, we tested the pressure-stroke performance and elastoplastic behaviors of the kirigami-skinned actuator to establish an operation protocol for repeatable performance. Analytical and experimental parametric analysis shows that one can effectively pre-program the actuator’s motion performance, with considerable freedom, simply by adjusting the angle and length of the slit cuts. The results of this study can establish the design and analysis framework for a new family of kirigami-skinned pneumatic actuators for many robotic applications.


Sign in / Sign up

Export Citation Format

Share Document