Virtual Machining überzeugt in der Lohnfertigung

VDI-Z ◽  
2021 ◽  
Vol 163 (09) ◽  
pp. 80-83
Author(s):  
Bernhard Valnion
Keyword(s):  

Der Auftragsfertiger CNC Berger setzt mit Erfolg auf eine durchdachte Fertigungs-IT-Infrastruktur. Dabei kommen CAM- und Simulationsanwendungen verschiedener Hersteller auf neutralem Werkzeug- und Technologie-Datenbank-Fundament zum Einsatz.

2014 ◽  
Vol 703 ◽  
pp. 163-166
Author(s):  
Yuan Yuan Wang ◽  
Jun Zhao ◽  
Fei Li

The cutting location of cutting-edge curves is obtained by the mathematic models of indexable inserts, and based on the softwares of UG and NCSIMUL, The virtual machining platform is realized to simulate the whole processing of grinding. The Entity modelings of indexable inserts are obtained by Boolean operation in virtual environment, and the basis is presented for analyzing accuracy of the mathematic models and the virtual machining platform. Testing efficiency of NC code and reliability of high speed grinding are improved. This method provides precise 3D models which can be used in the followed works such as finite analysis, CNC machining and so on.


2007 ◽  
Vol 129 (4) ◽  
pp. 780-788 ◽  
Author(s):  
Giovanni Tani ◽  
Raffaele Bedini ◽  
Alessandro Fortunato ◽  
Claudio Mantega

This paper describes the modeling and simulation of the Z axis of a five axis machining center for high-speed milling. The axis consists of a mechanical structure: machine head and electro-mandrel, a CNC system interfaced with the feed drive, and a pneumatic system to compensate for the weight of the vertical machine head. These subsystems were studied and modeled by means of: (1) finite element method modeling of the mechanical structure; (2) a concentrated parameter model of the kinematics of the axis; (3) a set of algebraic and logical relations to represent the loop CNC-Z feed drive; (4) an equation set to represent the functioning of the pneumatic system; and (5) a specific analytical model of the friction phenomena occurring between sliding and rotating mechanical components. These modeled subsystems were integrated to represent the dynamic behavior of the entire Z axis. The model was translated in a computer simulation package and the validation of the model was made possible by comparing the outputs of simulation runs with the records of experimental tests on the machining center. The firm which promoted and financed the research now has a virtual tool to design improved machine-tool versions with respect to present models, designed by traditional tools.


VDI-Z ◽  
2020 ◽  
Vol 162 (10) ◽  
pp. 50-53
Author(s):  
Bernhard Valnion
Keyword(s):  

Der Schweizer Lohnfertiger Werkhalle Schmid AG will bei der Umsetzung seiner Digitalisierungsstrategie das Optimum erreichen. Daher setzt er auf die moderne Virtual-Machining-Prozesslösung von Coscom. Dadurch konnten die Rüstzeiten in der Fertigung auf ein Minimum reduziert werden.


2012 ◽  
Vol 452-453 ◽  
pp. 1267-1271
Author(s):  
Yu Hou Wu ◽  
Qiang Gao ◽  
De Hong Zhao
Keyword(s):  

2013 ◽  
Vol 546 ◽  
pp. 70-75
Author(s):  
Q.N. Hu ◽  
D.J. Feng ◽  
H. Shu ◽  
H.Z. Dai ◽  
J.L. Wu

A machining virtual reality system is established by studying the operating procedure of machining. The modeling and optimization method of scene model is put forward. Two different roaming ways, that is the automatic roaming path and the free roaming path, are designed. The process of machine and the operation of virtual worker are simulated based on the technique of modular programming and collision detection in Virtools, enhancing the sense of immersion and reality of the virtual machining process. The system provides a new method for machining experimental instruction.


Author(s):  
Zezhong C. Chen ◽  
Wei Cai

To address a major technical challenge in simulating geometric models of machined sculptured surfaces in three-axis virtual machining, this paper presents an efficient, accurate approach to representing the 3D envelopes of a cutter sweeping sequentially through cutter locations; these envelopes embody the furrow patches of the machined surfaces. In our research, the basic mechanism of removing stock material in three-axis computer numerically controlled (CNC) milling of sculptured surfaces is investigated, and, consequently, an effective model is proposed to represent the 3D envelopes (or furrow patches). Our main contribution is that a new directrix (or swept profile) of the furrow patches (mathematically, ruled surfaces) is identified as a simple 2D envelope of cutting circles and is formulated with a closed-form equation. Therefore, the 3D cutter-swept envelopes can be represented more accurately and quickly than the existing swept-volume methods. With this innovative approach, a method of accurate prediction of the machining errors along tool paths in three-axis finish machining is provided, which is then applied to the optimization of tool-path discretization in two examples. Their results demonstrate the advantages of our approach and verify that the current machining-error-prediction methods can cause gouging in three-axis sculptured surface milling.


2018 ◽  
Vol 25 ◽  
pp. 338-343 ◽  
Author(s):  
Nikolas Theissen ◽  
Theodoros Laspas ◽  
Károly Szipka ◽  
Andreas Archenti

Sign in / Sign up

Export Citation Format

Share Document