Aerosols at Salzburg Airport: Long-term measurements of ultrafine particles at two locations along the runway/Aerosole am Salzburger Flughafen: Langzeitmessungen von ultrafeinen Partikeln an zwei Messstellen neben der Rollbahn

Gefahrstoffe ◽  
2019 ◽  
Vol 79 (06) ◽  
pp. 227-234
Author(s):  
M. Vorage ◽  
P. Madl ◽  
A. Hubmer ◽  
H. Lettner

This paper unequivocally links particle emissions to specific planes engaged in landing and take-off (LTO) activity at Salzburg Airport (SZG, Austria). This is possible because particles were counted in ten second intervals over multiple months at two locations simultaneously upwind and downwind in close proximity of the runway. As background levels are relatively low and LTO activities are limited, data on aircraft noise and identity enables the allocation of sharp and short-lived spikes of particle concentrations to specific aircraft located upwind. In addition, the spike shapes may even be used to identify engine modes and deduce conjectures on LTO movements of the plane. Particle size distribution measurements confirm aircraft engines as the site of origin.

2014 ◽  
Vol 22 (02) ◽  
pp. 1440001 ◽  
Author(s):  
AIXIANG XU ◽  
ZHIQIANG LIU ◽  
TENGLEI ZHAO ◽  
XIAOXIAO WANG

Particle size distribution and number of ice crystals have a great influence on the flow and heat transfer performance of ice slurry. A population balance model (PBM) containing population and mass balances has been built to simulate numerically the development of ice particle size distribution during adiabatic ice slurry storage. The model assumes a homogeneously mixed and long-term storage tank in which the effect of breakage and aggregation between ice crystals was considered. For solving the population balance equations (PBEs) in the PBM, a semi-discrete finite volume scheme was applied. Finally, the effect of breakage and aggregation on development of ice particle size distribution was analyzed respectively. The results show that both breakage and aggregation are the two important effects on the particle size distribution and evolution of ice particle during storage, but they have opposite effect on the development of ice crystal size. In storage, breakage and aggregation have almost equivalent effect in the initial phase, but aggregation has dominant effect at last. The PBM results are in good agreement with experimental results by Pronk et al. [Effect of long-term ice slurry storage on crystal size distribution, 5th Workshop on Ice Slurries of the IIR (2002), pp. 151–160]. Therefore, the PBM presented in this paper is able to predict the development of particle size distribution during ice slurry storage.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1288
Author(s):  
Laura Colorado-Arango ◽  
Juan M. Menéndez-Aguado ◽  
Adriana Osorio-Correa

Six different particle size distribution (Gates–Gaudin–Schuhmann (GGS), Rosin–Rammler (RR), Lognormal, Normal, Gamma, and Swebrec) models were compared under different metallurgical coke grinding conditions (ball size and grinding time). Adjusted R2, Akaike information criterion (AIC), and the root mean of square error (RMSE) were employed as comparison criteria. Swebrec and RR presented superior comparison criteria with the higher goodness-of-fit and the lower AIC and RMSE, containing the minimum variance values among data. The worst model fitting was GGS, with the poorest comparison criteria and a wider results variation. The undulation Swebrec parameter was ball size and grinding time-dependent, considering greater b values (b > 3) at longer grinding times. The RR α parameter does not exhibit a defined tendency related to grinding conditions, while the k parameter presents smaller values at longer grinding times. Both models depend on metallurgical coke grinding conditions and are hence an indication of the grinding behaviour. Finally, oversize and ultrafine particles are found with ball sizes of 4.0 cm according to grinding time. The ball size of 2.54 cm shows slight changes in particle median diameter over time, while 3.0 cm ball size requires more grinding time to reduce metallurgical coke particles.


2018 ◽  
Vol 18 (13) ◽  
pp. 9597-9615 ◽  
Author(s):  
Jorma Joutsensaari ◽  
Matthew Ozon ◽  
Tuomo Nieminen ◽  
Santtu Mikkonen ◽  
Timo Lähivaara ◽  
...  

Abstract. New particle formation (NPF) in the atmosphere is globally an important source of climate relevant aerosol particles. Occurrence of NPF events is typically analyzed by researchers manually from particle size distribution data day by day, which is time consuming and the classification of event types may be inconsistent. To get more reliable and consistent results, the NPF event analysis should be automatized. We have developed an automatic analysis method based on deep learning, a subarea of machine learning, for NPF event identification. To our knowledge, this is the first time that a deep learning method, i.e., transfer learning of a convolutional neural network (CNN), has successfully been used to automatically classify NPF events into different classes directly from particle size distribution images, similarly to how the researchers carry out the manual classification. The developed method is based on image analysis of particle size distributions using a pretrained deep CNN, named AlexNet, which was transfer learned to recognize NPF event classes (six different types). In transfer learning, a partial set of particle size distribution images was used in the training stage of the CNN and the rest of the images for testing the success of the training. The method was utilized for a 15-year-long dataset measured at San Pietro Capofiume (SPC) in Italy. We studied the performance of the training with different training and testing of image number ratios as well as with different regions of interest in the images. The results show that clear event (i.e., classes 1 and 2) and nonevent days can be identified with an accuracy of ca. 80 %, when the CNN classification is compared with that of an expert, which is a good first result for automatic NPF event analysis. In the event classification, the choice between different event classes is not an easy task even for trained researchers, and thus overlapping or confusion between different classes occurs. Hence, we cross-validated the learning results of CNN with the expert-made classification. The results show that the overlapping occurs, typically between the adjacent or similar type of classes, e.g., a manually classified Class 1 is categorized mainly into classes 1 and 2 by CNN, indicating that the manual and CNN classifications are very consistent for most of the days. The classification would be more consistent, by both human and CNN, if only two different classes are used for event days instead of three classes. Thus, we recommend that in the future analysis, event days should be categorized into classes of “quantifiable” (i.e., clear events, classes 1 and 2) and “nonquantifiable” (i.e., weak events, Class  3). This would better describe the difference of those classes: both formation and growth rates can be determined for quantifiable days but not both for nonquantifiable days. Furthermore, we investigated more deeply the days that are classified as clear events by experts and recognized as nonevents by the CNN and vice versa. Clear misclassifications seem to occur more commonly in manual analysis than in the CNN categorization, which is mostly due to the inconsistency in the human-made classification or errors in the booking of the event class. In general, the automatic CNN classifier has a better reliability and repeatability in NPF event classification than human-made classification and, thus, the transfer-learned pretrained CNNs are powerful tools to analyze long-term datasets. The developed NPF event classifier can be easily utilized to analyze any long-term datasets more accurately and consistently, which helps us to understand in detail aerosol–climate interactions and the long-term effects of climate change on NPF in the atmosphere. We encourage researchers to use the model in other sites. However, we suggest that the CNN should be transfer learned again for new site data with a minimum of ca. 150 figures per class to obtain good enough classification results, especially if the size distribution evolution differs from training data. In the future, we will utilize the method for data from other sites, develop it to analyze more parameters and evaluate how successfully CNN could be trained with synthetic NPF event data.


2013 ◽  
Vol 6 (5) ◽  
pp. 8647-8677 ◽  
Author(s):  
A. Skupin ◽  
A. Ansmann ◽  
R. Engelmann ◽  
H. Baars

Abstract. A Spectral Aerosol Extinction Monitoring System (SÆMS) is presented that allows us to continuously measure the spectral extinction coefficient of atmospheric aerosol particles along an about 2.7 km long optical path at 30–50 m height above ground at Leipzig (51.3° N, 12.4° E), Germany. The fully automated instrument measures the ambient aerosol extinction coefficients from 300–1000 nm. The main goal of SÆMS observations are long-term studies of the relationship between particle extinction and relative humidity from below 40 % to almost 100 %. The setup is presented and observations (a case study and statistical results for 2009) are discussed in terms of time series of 550 nm particle optical depth, Ångström exponent, and particle size distribution retrieved from the spectrally resolved extinction. The SÆMS measurements are compared with simultaneously performed EARLINET lidar, AERONET photometer, and in situ aerosol observations of particle size distribution and related extinction coefficients at the roof of our institute. Consistency between the different measurements is found which corroborates the quality of the SÆMS observations.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1175 ◽  
Author(s):  
Ji-Soo Hwang ◽  
Jin Yu ◽  
Hyoung-Mi Kim ◽  
Jae-Min Oh ◽  
Soo-Jin Choi

Titanium dioxide (TiO2) is one of the most extensively utilized food additives (E171) in the food industry. Along with nanotechnology development, the concern about the presence of nanostructured particles in E171 TiO2 and commercial food products is growing. In the present study, the physicochemical properties of commercially available E171 TiO2 particles, including particle size distribution, were investigated, followed by their cytotoxicity and intestinal transport evaluation. The fate determination and quantification of E171 TiO2 in commercial foods were carried out based on the analytical procedure developed using simulated foods. The results demonstrated that TiO2 is a material mainly composed of particles larger than 100 nm, but present as an agglomerated or aggregated particle in commercial foods with amounts of less than 1% (wt/wt). Titanium dioxide particles generated reactive oxygen species and inhibited long-term colony formation, but the cytotoxicity was not related to particle size distribution or particle type (food- or general-grade). All TiO2 particles were mainly transported by microfold (M) cells, but also by intestinal tight junction. These findings will be useful for TiO2 application in the food industry and predicting its potential toxicity.


Sign in / Sign up

Export Citation Format

Share Document