scholarly journals Clastic facies models, a personal perspective

2001 ◽  
Vol 48 ◽  
pp. 101-115
Author(s):  
Harold G. Reading

Facies models evolved from classifications that were mainly descriptive, based on observable, measureable features such as the composition and texture of sedimentary rocks. As our understanding of sedimentary processes expanded, genetic facies models were developed based on the inferred process of formation. Since individual facies cannot be interpreted in isolation, they must be studied with reference to their neighbours, emphasizing the association of facies and sequences, in particular those that coarsen and fine upward. Environmental facies models are based on the interaction of studies on modern environments and ancient rock facies. Earlier facies models tended to invoke intrinsic, autocyclic controls. The advent of sequence stratigraphy led to greater emphasis on the surfaces that separate sequences and to external allocyclic controls. These were, initially, sea-level changes; later, changes in climate, tectonic movements and sediment supply were invoked. Over time, simple, all embracing models have given way to increasingly complex ones as our knowledge of the variability of nature has increased. Complex though these models are, they are only simplifications of reality. In nature there are no models and the majority of past environments differed in some respect from any modern environment. Each environment and rock sequence is unique.

2004 ◽  
Vol 51 ◽  
pp. 89-109 ◽  
Author(s):  
Erik Skovbjerg Rasmussen

The uppermost Oligocene – Miocene succession in Denmark is subdivided into six depositional sequences. The development of the succession was controlled both by tectonic movements and eustatic sea-level changes. Tectonic movements generated a topography, which influenced the depositional pattern especially during low sea level. This resulted in sediment by-pass on elevated areas and the confinement of fluvial systems to structural lows. Structural highs further created restricted depositional environments behind the highs during low sea level. The structural highs were also the locus for sandy spit deposits during transgression and high sea level. Initially sediment supply was from the north and north-east but shifted within the Middle Miocene to an easterly direction indicating a significant basin reorganisation at this time. Eustatic sea-level changes mainly controlledthe timing of sequence boundary development and the overall architecture of the sequences.Consequently, the most coarse-grained sediments were deposited within the forced regressive wedge systems tract, the lowstand systems tract and the early transgressive systems tract. The most distinct progradation occurred in the Aquitanian (Lower Miocene) and was associated with a cold period in central Europe.The subsequent rise of sea level until the Serravallian (Middle Miocene) resulted in an overall back-stepping stacking pattern of the sequences and in decreasing incision.


2016 ◽  
Vol 4 (1) ◽  
pp. T79-T101
Author(s):  
Joseph Bertrand Iboum Kissaaka ◽  
Joseph Marie Ntamak-Nida ◽  
François Mvondo ◽  
Paul Gustave Fowe Kwetche ◽  
Adrien Lamire Djomeni Nitcheu ◽  
...  

Using 2D seismic data and well logs from the Kribi-Campo subbasin in the south Cameroon margin, we have analyzed the postrift succession with the aim of deriving a chronostratigraphic chart and identifying stratigraphic traps. The Kribi-Campo subbasin related to the rifting between Africa and South America could be divided into a structurally complex eastern depocenter and a relatively less disturbed western depocenter in which a break-up unconformity approximately 107.5 Ma underlined the beginning of postrift history. We have used the modern concepts of sequence stratigraphy to identify and characterize seven second-order (SS1, SS2, SS3, SS4, SS5, SS6, and SS7) sequences and one third-order (SS8) sequences grouped into three megasequences (A, B, and C) from Albian to Recent. Sequence 1 (Albian-Cenomanian) was characterized by a retrogradation overlying a lowstand progradational pattern. The SS2 (Campanian-Maastrichtian) and SS3 (Maastrichtian) sequences were deposited during a highstand normal regression. From Paleocene to Eocene, the deposition of sequences SS4–SS5 was controlled by the development of submarine fan turbiditic system related to a forced regression of coastline. From the Middle Miocene to Recent age, the SS6, SS7, and SS8 sequences have been characterized by the development of sigmoidal-oblique clinoforms of a deltaic system well observed in the northern part of the study area. We have studied a new undocumented phase of forced regression of Mio-Pliocene in age within the postrift sequence SS7. The forced regression phases are associated with the Paleogene and Neogene uplift. Relative sea-level curves were constructed and compared with the existing published curves. The processes involved in the formation of these sequences were interpreted as a combination of tectonics, sediment supply, and sea-level changes. Potential reservoirs embedded within the sequences include channel fill, shingled turbidites, slope fan, and basin-floor fan complex.


2017 ◽  
Vol 1 (2) ◽  
pp. 38
Author(s):  
Jamaluddin . ◽  
Romuald Sohores ◽  
Muhammad Fawzy Ismullah

The continuous sea-level rise will result in conditions where the level of accommodation space is greater than that of sediment supply produced undertransgression conditions. When the sea level reaches its maximum point, the sedimentation rate will exceed the sea level rise and aggrades becomes more dominant progradation will result in new Highstand System Tract (HST) condition. Keyword: Accommodation, Sea level changes, Sedimentation, Sequence, Stratigraphy


2020 ◽  
Vol 90 (8) ◽  
pp. 938-968
Author(s):  
Ariana Osman ◽  
Ronald J. Steel ◽  
Ryan Ramsook ◽  
Cornel Olariu ◽  
Si Chen

ABSTRACT Icehouse continental-shelf-margin accretion is typically driven by high-sediment-supply deltas and repeated glacio-eustatic, climate-driven sea-level changes on a ca. 100 ky time scale. The paleo–Orinoco margin is no exception to this, as the paleo–Orinoco River Delta with its high sediment load prograded across Venezuela, then into the Southern and Columbus basins of Trinidad since the late Miocene, depositing a continental-margin sedimentary prism that is > 12 km thick, 200 km wide, and 500 km along dip. The Cruse Formation (> 800 m thick; 3 My duration) records the first arrival of the paleo–Orinoco Delta into the Trinidad area. It then accreted eastwards, outwards onto the Atlantic margin, by shallow to deepwater clinoform increments since the late Miocene and is capped by a major, thick flooding interval (the Lower Forest Clay). Previous research has provided an understanding of the paleo–Orinoco Delta depositional system at seismic and outcrop scales, but a clinoform framework detailing proximal to distal reaches through the main fairway of the Southern Basin has never been built. We integrate data from 58 wells and outcrop observations to present a 3-D illustration of 15 mapped Cruse clinoforms, in order to understand the changing character of the first Orinoco clastic wedge on Trinidad. The clinoforms have an undecompacted average height of 550 m, estimated continental slope of 2.5° tapering to 1°, and a distance from shelf edge to near-base of slope of > 10 km. The clinoform framework shows trajectory changes from strong shelf-margin progradation (C10–C13) to aggradation (C14–C20) and to renewed progradation (C21–24). Cruse margin progradational phases illustrate oblique clinothem geometries that lack well-developed topsets but contain up to 70 m (200 ft) thick, deepwater slope channels. This suggests a high supply of sediment during periods of repeated icehouse rise and fall of eustatic sea level, with fall outpacing subsidence rates at times, and delivery of sand to the deepwater region of the embryonic Columbus channel region. Also, evidence of wholesale shelf-edge collapse and canyon features seen in outcrop strongly suggest that deepwater conduits for sediment dispersal and bypass surfaces for Cruse basin-floor fans do exist. The change to a topset aggradational pattern with a rising shelf trajectory may be linked to increased subsidence associated with eastward migration of the Caribbean plate. The Cruse-margin topsets were dominated by mixed fluvial–wave delta lobes that were effective in delivery of sands to the basin floor. The preservation of a fluvial regime of the delta may have been impacted by basin geometry which partly sheltered the area from the open Atlantic wave energy at the shelf edge. Ultimately, understanding shelf-edge migration style as well as process-regime changes during cross-shelf transits of the delta will help to predict the location of bypassed sands and their delivery to deepwater areas.


Sign in / Sign up

Export Citation Format

Share Document