scholarly journals Technology of training a neural-network model for ontology population

2021 ◽  
Vol 12 (5-2021) ◽  
pp. 166-170
Author(s):  
Pavel A. Lomov ◽  
◽  
Marina L. Malozemova ◽  

The paper considers one of the subtasks of ontology learning - the ontology population, which implies the extension of existing ontology by new instances without changing the structure of its classes and relations. A brief overview of existing ontology learning approaches is presented. A highly automated technology for ontology population based on training and application of the neural-network language model to identify and extract potential instances of ontology classes from domain texts is proposed. The main stages of its application, as well as the results of its experimental evaluation and the main directions of its further improvement are considered.

2020 ◽  
Vol 11 (8-2020) ◽  
pp. 38-46
Author(s):  
P.A. Lomov ◽  
◽  
M.L. Malozemova ◽  

The article considers one of the subtasks of ontology learning -the ontology population, which implies the extension of existing ontology by new instances without changing the ontology structure. A brief overview ofexisting ontology learning approaches and their software implementations is presented. A highly automated technology for ontology population based on training and application of the neural network language model to identify and extract potential instancesof ontology classes from domain texts is proposed. The main stages of its application, as well as the results of its experimental evaluation and the main directions of its further improvement are considered.


2021 ◽  
Vol 12 (5-2021) ◽  
pp. 22-34
Author(s):  
Pavel A. Lomov ◽  
◽  
Marina L. Malozemova ◽  

This paper is a continuation of the research focused on solving the problem of ontology population using training on an automatically generated training set and the subsequent use of a neural-network language model for analyzing texts in order to discover new concepts to add to the ontology. The article is devoted to the text data augmentation - increasing the size of the training set by modification of its samples. Along with this, a solution to the problem of clarifying concepts (i.e. adjusting their boundaries in sentences), which were found during the automatic formation of the training set, is considered. A brief overview of existing approaches to text data augmentation, as well as approaches to extracting so-called nested named entities (nested NER), is presented. A procedure is proposed for clarifying the boundaries of the discovered concepts of the training set and its augmentation for subsequent training a neural-network language model in order to identify new concepts of ontology in the domain texts. The results of the experimental evaluation of the trained model and the main directions of further research are considered.


2013 ◽  
Vol 718-720 ◽  
pp. 1961-1966
Author(s):  
Hong Sheng Xu ◽  
Qing Tan

Electronic commerce recommendation system can effectively retain user, prevent users from erosion, and improve e-commerce system sales. BP neural network using iterative operation, solving the weights of the neural network and close values to corresponding network process of learning and memory, to join the hidden layer nodes of the optimization problem of adjustable parameters increase. Ontology learning is the use of machine learning and statistical techniques, with automatic or semi-automatic way, from the existing data resources and obtaining desired body. The paper presents building electronic commerce recommendation system based on ontology learning and BP neural network. Experimental results show that the proposed algorithm has high efficiency.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


Sign in / Sign up

Export Citation Format

Share Document