Building Electronic Commerce Recommendation System Based on Ontology Learning and BP Neural Network

2013 ◽  
Vol 718-720 ◽  
pp. 1961-1966
Author(s):  
Hong Sheng Xu ◽  
Qing Tan

Electronic commerce recommendation system can effectively retain user, prevent users from erosion, and improve e-commerce system sales. BP neural network using iterative operation, solving the weights of the neural network and close values to corresponding network process of learning and memory, to join the hidden layer nodes of the optimization problem of adjustable parameters increase. Ontology learning is the use of machine learning and statistical techniques, with automatic or semi-automatic way, from the existing data resources and obtaining desired body. The paper presents building electronic commerce recommendation system based on ontology learning and BP neural network. Experimental results show that the proposed algorithm has high efficiency.

2011 ◽  
Vol 141 ◽  
pp. 275-278
Author(s):  
Zhi Gao Luo ◽  
Bao Gang Zhang ◽  
Xin He

The paper performs an experimental research on the crack identification of drawing parts using AE technique. Under the platform of the AE system, the AE signals of drawing parts crack are acquired. BP neural network is designed with three layers. They are ten neurons of input layer, three neurons of output layer and thirteen neurons of hidden layer. The characteristic parameters of the crack acoustic emission are considered as the input of BP neural network to exercise the network. The test data are inputted to the neural network after it is exercised. The test result is in accord with the experiment result. The method is proper to identify the crack of drawing parts. The emergence of many inferior parts and the waste of resource can be avoided. It also can debase the cost of manufacture and improve the productive efficiency.


2012 ◽  
Vol 518-523 ◽  
pp. 6084-6087
Author(s):  
Qing Ye ◽  
Ya Yi Su ◽  
Fei Chen

Establish the land evaluation model of Xiamen by means of BP neural network theory, taking 2007-2009 land evaluation cases of Xiamen as examples. Through statistical analysis, we find that the neural network which has 9 net work hidden layer nodes and 19% of maximal error index is more suitable for Xiamen land price assessment than others. Empirical analysis shows that the model has a good generalization ability, which can be used for land evaluation practices. The results indicates that the properties of autonomous learning of BP network can reduce the subjective factors of appraiser in land evaluation , also, the network has the advantage of simple and quick calculation.


2011 ◽  
Vol 304 ◽  
pp. 268-273
Author(s):  
Hong Xia Zhao ◽  
Zhi Xia Liu ◽  
Zhi Yang Luo ◽  
Guan Yun Xiao

The color of farm produce is a very important index of quality, its nutrition is correlative with itself color. At present, most of the analyses for pigment and nutrient composition still depend on chemical method; therefore the relation is studied between waxberry color and its nutrition composition based on BP neural network. The conversion relation is expressed by three-layer BP network, which hidden layer has 11 node numbers and its transfer function adopts tansig function; transfer function of output layer selects purelin function. The neural network and linear model of nutrition composition is compared respectively. The MSE value of linear model is 0.300892, and that training error of neural network is 0.0219585. From this result,we can find that the conversion relation between waxberry color and its nutrition composition is a complex non-linear relation, so neural network is adopted to complete this conversion.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 11 (9) ◽  
pp. 4243
Author(s):  
Chieh-Yuan Tsai ◽  
Yi-Fan Chiu ◽  
Yu-Jen Chen

Nowadays, recommendation systems have been successfully adopted in variant online services such as e-commerce, news, and social media. The recommenders provide users a convenient and efficient way to find their exciting items and increase service providers’ revenue. However, it is found that many recommenders suffered from the cold start (CS) problem where only a small number of ratings are available for some new items. To conquer the difficulties, this research proposes a two-stage neural network-based CS item recommendation system. The proposed system includes two major components, which are the denoising autoencoder (DAE)-based CS item rating (DACR) generator and the neural network-based collaborative filtering (NNCF) predictor. In the DACR generator, a textual description of an item is used as auxiliary content information to represent the item. Then, the DAE is applied to extract the content features from high-dimensional textual vectors. With the compact content features, a CS item’s rating can be efficiently derived based on the ratings of similar non-CS items. Second, the NNCF predictor is developed to predict the ratings in the sparse user–item matrix. In the predictor, both spare binary user and item vectors are projected to dense latent vectors in the embedding layer. Next, latent vectors are fed into multilayer perceptron (MLP) layers for user–item matrix learning. Finally, appropriate item suggestions can be accurately obtained. The extensive experiments show that the DAE can significantly reduce the computational time for item similarity evaluations while keeping the original features’ characteristics. Besides, the experiments show that the proposed NNCF predictor outperforms several popular recommendation algorithms. We also demonstrate that the proposed CS item recommender can achieve up to 8% MAE improvement compared to adding no CS item rating.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Cordes ◽  
Theresa Ida Götz ◽  
Elmar Wolfgang Lang ◽  
Stephan Coerper ◽  
Torsten Kuwert ◽  
...  

Abstract Background Ultrasound is the first-line imaging modality for detection and classification of thyroid nodules. Certain characteristics observable by ultrasound have recently been identified that may indicate malignancy. This retrospective cohort study was conducted to test the hypothesis that advanced thyroid carcinomas show distinctive clinical and sonographic characteristics. Using a neural network model as proof of concept, nine clinical/sonographic features served as input. Methods All 96 study enrollees had histologically confirmed thyroid carcinomas, categorized (n = 32, each) as follows: group 1, advanced carcinoma (ADV) marked by local invasion or distant metastasis; group 2, non-advanced papillary carcinoma (PTC); or group 3, non-advanced follicular carcinoma (FTC). Preoperative ultrasound profiles were obtained via standardized protocols. The neural network had nine input neurons and one hidden layer. Results Mean age and the number of male patients in group 1 were significantly higher compared with groups 2 (p = 0.005) or 3 (p <  0.001). On ultrasound, tumors of larger volume and irregular shape were observed significantly more often in group 1 compared with groups 2 (p <  0.001) or 3 (p ≤ 0.01). Network accuracy in discriminating advanced vs. non-advanced tumors was 84.4% (95% confidence interval [CI]: 75.5–91), with positive and negative predictive values of 87.1% (95% CI: 70.2–96.4) and 92.3% (95% CI: 83.0–97.5), respectively. Conclusions Our study has shown some evidence that advanced thyroid tumors demonstrate distinctive clinical and sonographic characteristics. Further prospective investigations with larger numbers of patients and multicenter design should be carried out to show whether a neural network incorporating these features may be an asset, helping to classify malignancies of the thyroid gland.


2012 ◽  
Vol 241-244 ◽  
pp. 1602-1607
Author(s):  
Guang Hai Han ◽  
Xin Jun Ma

It usually need different ways to process different objects in the manufacturing, Therefore, firstly we need to distinguish the categories of objects to be processed, then the machine will know how to deal with the objects. In order to automatically recognize the category of the irregular object, this paper extracted the improved Hu's moments of each object as the feature by the way of processing images of the working platform that the irregular objects are putting on. This paper adopts the variable step BP neural network with adaptive momentum factor as the classifier. The experiment shows that this method can effectively distinguish different irregular objects, and during the training of the neural network, it has faster convergence speed and better approximation compared with the traditional BP neural network


2008 ◽  
Vol 392-394 ◽  
pp. 891-897
Author(s):  
G.Q. Shang ◽  
C.H. Sun ◽  
X.F. Chen ◽  
J.H. Du

Fused deposition modeling (FDM) has been widely applied in complex parts manufacturing and rapid tooling and so on. The precision of prototype was affected by many factors during FDM, so it is difficult to depict the process using a precise mathematical model. A novel approach for establishing a BP neural network model to predict FDM prototype precision was proposed in this paper. Firstly, based on analyzing effect of each factor on prototyping precision, some key parameters were confirmed to be feature parameters of BP neural networks. Then, the dimensional numbers of input layer and middle hidden layer were confirmed according to practical conditions, and therefore the model structure was fixed. Finally, the structure was trained by a great lot of experimental data, a model of BP neural network to predict precision of FDM prototype was constituted. The results show that the error can be controlled within 10%, which possesses excellent capability of predicting precision.


Author(s):  
Chang Guo ◽  
Ming Gao ◽  
Peixin Dong ◽  
Yuetao Shi ◽  
Fengzhong Sun

As one kind of serious environmental problems, flow-induced noise in centrifugal pumps pollutes the working circumstance and deteriorates the performance of pumps, meanwhile, it always changes drastically under various working conditions. Consequently, it is extremely significant to predict flow-induced noise of centrifugal pumps under various working conditions with a practical mathematical model. In this paper, a three-layer back propagation (BP) neural network model is established and the number of input, hidden and output layer node is set as 3, 6 and 1, respectively. To be specific, the flow rate, rotational speed and medium temperature are chosen as input layer, and the corresponding flow-induced noise evaluated by average of total sound pressure level (A_TSPL) as output layer. Furthermore, the tansig function is used to act as transfer function between the input layer and hidden layer, and the purelin function is used between hidden layer and output layer. The trainlm function based on Levenberg-Marquardt algorithm is selected as the training function. By using a large number of sample data, the training of the network model and prediction research are accomplished. The results indicate that good correlation is established among the sample data, and the predictive values show great consistence with simulation ones, of which the average relative error of A_TSPL in process of verification is 0.52%. The precision of the model can satisfy the requirement of relevant research and engineering application.


Sign in / Sign up

Export Citation Format

Share Document