scholarly journals Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

2010 ◽  
Vol 1 ◽  
pp. 75-93 ◽  
Author(s):  
Alexander Weddemann ◽  
Inga Ennen ◽  
Anna Regtmeier ◽  
Camelia Albon ◽  
Annalena Wolff ◽  
...  

This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.

2012 ◽  
Vol 3 ◽  
pp. 114-122 ◽  
Author(s):  
ChaMarra K Saner ◽  
Kathie L Lusker ◽  
Zorabel M LeJeune ◽  
Wilson K Serem ◽  
Jayne C Garno

Particle lithography offers generic capabilities for the high-throughput fabrication of nanopatterns from organosilane self-assembled monolayers, which offers the opportunity to study surface-based chemical reactions at the molecular level. Nanopatterns of octadecyltrichlorosilane (OTS) were prepared on surfaces of Si(111) using designed protocols of particle lithography combined with either vapor deposition, immersion, or contact printing. Changing the physical approaches for applying molecules to masked surfaces produced OTS nanostructures with different shapes and heights. Ring nanostructures, nanodots and uncovered pores of OTS were prepared using three protocols, with OTS surface coverage ranging from 10% to 85%. Thickness measurements from AFM cursor profiles were used to evaluate the orientation and density of the OTS nanostructures. Differences in the thickness and morphology of the OTS nanostructures are disclosed based on atomic force microscopy (AFM) images. Images of OTS nanostructures prepared on Si(111) that were generated by the different approaches provide insight into the self-assembly mechanism of OTS, and particularly into the role of water and solvents in hydrolysis and silanation.


2020 ◽  
Author(s):  
Xinkai Qiu ◽  
Sylvia Rousseva ◽  
Gang Ye ◽  
Jan C. Hummelen ◽  
Ryan Chiechi

This paper describes the reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers. We use well-established functional groups to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements establish that rectification occurs by a bias-dependent tunneling-hopping mechanism and that glycol ethers, beside being an unusually efficient tunneling medium, behave identically to alkanes. We fabricated memory bits from crossbar junctions prepared by injecting eutectic Ga-In into microfluidic channels. Two 8-bit registers were able to perform logical AND operations on bit strings encoded into chemical packets as microfluidic droplets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof of concept work demonstrates the potential for fieldable molecular-electronic devices based on tunneling junctions of self-assembled monolayers and bilayers.


Langmuir ◽  
2008 ◽  
Vol 24 (5) ◽  
pp. 2219-2223 ◽  
Author(s):  
Yabing Qi ◽  
Imma Ratera ◽  
Jeong Y. Park ◽  
Paul D. Ashby ◽  
Su Ying Quek ◽  
...  

2007 ◽  
Vol 85 (10) ◽  
pp. 793-800 ◽  
Author(s):  
Xiaosong Liu ◽  
Fan Zheng ◽  
A Jürgensen ◽  
V Perez-Dieste ◽  
D Y Petrovykh ◽  
...  

Surface science has made great strides towards tailoring surface properties via self-assembly of nanoscale molecular adsorbates. It is now possible to functionalize surfaces with complex biomolecules such as DNA and proteins. This brief overview shows how NEXAFS (near edge X-ray absorption fine structure spectroscopy) can be used to characterize the assembly of biological molecules at surfaces in atom- and orbital-specific fashion. To illustrate the range of applications, we begin with simple self-assembled monolayers (SAMs), proceed to SAMs with customized terminal groups, and finish with DNA oligonucleotides and Ribonuclease A, a small protein containing 124 amino acids. The N 1s absorption edge is particularly useful for characterizing DNA and proteins because it selectively interrogates the π* orbitals in nucleobases and the peptide bonds in proteins. Information about the orientation of molecular orbitals is obtained from the polarization dependence. Quantitative NEXAFS models explain the polarization dependence in terms of molecular orientation and structure.Key words: NEXAFS, bio-interfaces, ribonuclease A, immobilization, orientation.


Langmuir ◽  
1998 ◽  
Vol 14 (22) ◽  
pp. 6419-6423 ◽  
Author(s):  
Mong-Tung Lee ◽  
Chen-Chan Hsueh ◽  
Michael S. Freund ◽  
Gregory S. Ferguson

Sign in / Sign up

Export Citation Format

Share Document