scholarly journals On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

2021 ◽  
Vol 12 ◽  
pp. 541-551
Author(s):  
Limin Wang ◽  
Aisha Adebola Womiloju ◽  
Christiane Höppener ◽  
Ulrich Sigmar Schubert ◽  
Stephanie Hoeppener

The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.

2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mustafa Culha ◽  
Brian Cullum ◽  
Nickolay Lavrik ◽  
Charles K. Klutse

While surface-enhanced Raman spectroscopy (SERS) has been attracting a continuously increasing interest of scientific community since its discovery, it has enjoyed a particularly rapid growth in the last decade. Most notable recent advances in SERS include novel technological approaches to SERS substrates and innovative applications of SERS in medicine and molecular biology. While a number of excellent reviews devoted to SERS appeared in the literature over the last two decades, we will focus this paper more specifically on several promising trends that have been highlighted less frequently. In particular, we will briefly overview strategies in designing and fabricating SERS substrates using deterministic patterning and then cover most recent biological applications of SERS.


MRS Advances ◽  
2017 ◽  
Vol 2 (19-20) ◽  
pp. 1077-1082 ◽  
Author(s):  
Guinevere Strack ◽  
Michaela Fitzgerald ◽  
Junwei Su ◽  
Margery G. H. Pelletier ◽  
Peter Gaines ◽  
...  

ABSTRACTHerein, we demonstrate a facile, rapid, and scalable method to fabricate polymer-based gratings for surface-enhanced Raman spectroscopy (SERS) sensors. To accomplish this, epoxy nanostripe arrays on silicon substrates were prepared using thermal annealing and UV-cross-linking. After preparation of the nanostripe arrays, the surface was briefly treated with oxygen plasma, which decreased the surface energy and enabled the growth of AgNPs on the polymer surface using a simple, low-cost, aqueous-based synthesis procedure. The SERS substrates exhibited a detection limit of ∼1 pM using rhodamine 6G (R6G). In addition, preliminary work with E. coli DH5 showed that the nanoimprinted substrates can be used to obtain Raman spectra of washed bacteria cells.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Quynh-Ngan Luong ◽  
Tran Cao Dao ◽  
Thi Thu Vu ◽  
Manh Cuong Nguyen ◽  
Nhu Duong Nguyen

Surface-enhanced Raman spectroscopy (SERS) is increasingly being used as a method for detecting traces of contaminants in a variety of specimens. In order to maximize SERS’s performance, the most important thing is to have highly active SERS substrates. In this report, we present a simple method for synthesizing silver nanodendrites (AgNDs) on the surface of a copper (Cu) plate using chemical deposition method. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the Cu surface. These AgNDs are distributed evenly across the entire Cu surface with a relatively thick density. The prepared AgNDs were applied as SERS substrates for detecting Rhodamine 6G (R6G) in chili powders. The results showed that, using the prepared AgNDs substrates, as low as 10−10 M R6G in chili powders can be detected. This demonstrates the applicability of fabricated AgNDs as a highly active SERS substrate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bin Tang ◽  
Fangyuan Han ◽  
Liping Zhu ◽  
Zongchang Luo ◽  
Jialin Wang ◽  
...  

Analytical science has always been calling for simple, fast and ultra-sensitive methods to sense molecules of interest. Surface-Enhanced Raman Spectroscopy (SERS) has drawn much attention as a convenient tool for molecular fingerprint characterization. In addition to sample preparation, the key point of sensitive SERS detection is the preparation of highly reproducible and sensitive SERS substrates. In this paper, 2D gold nanoclusters are grown on surfaces of glass slips using an in-situ cyclic growth method in aqueous solutions to prepare high-quality SERS substrates, whose surface morphology can be effectively modulated by adjusting a few parameters during preparation. Substrates prepared with optimized parameters exhibit high SERS activity, uniform response, and good batch-to-batch reproducibility. Due to their strong absorption in the near-infrared range, the substrates can be combined with a portable Raman spectrometer with 785 nm excitation wavelength to detect traces of dibenzyl disulfide (DBDS), a major source of corrosive sulfur in mineral insulating oil. A detection limit lower than 1 mg/L can be achieved with the aid of a simple sample pretreatment method, representing a promising on-site insulating oil analysis method for electric power industry.


2000 ◽  
Vol 54 (8) ◽  
pp. 1126-1135 ◽  
Author(s):  
P. A. Mosier-Boss ◽  
S. H. Lieberman

The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated, silver substrates to detect nitrate and sulfate ions in aqueous environments is examined. For normal Raman spectroscopy using near-infrared excitation, a linear concentration response was observed with detection limits of 260 and 440 ppm for nitrate and sulfate, respectively. Detection limits in the low parts-per-million concentration range for these anions are achieved by using cationic-coated, silver SERS substrates. Adsorption of the anions on the cationic-coated SERS substrates is described by a Frumkin isotherm.


Sign in / Sign up

Export Citation Format

Share Document