scholarly journals Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

2021 ◽  
Vol 12 ◽  
pp. 786-797
Author(s):  
Khosro Adibkia ◽  
Ali Ehsani ◽  
Asma Jodaei ◽  
Ezzatollah Fathi ◽  
Raheleh Farahzadi ◽  
...  

Finding new strategies for the treatment of heart failures using stem cells has attracted a lot of attention. Meanwhile, nanotechnology-based approaches to regenerative medicine hypothesize a possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For this purpose, MSCs were isolated from bone marrow resident and differentiated to the cardiac cells using a dedicated medium with Ag-NPs. Also, the cardiomyogenic differentiation of BM-MSCs was confirmed using immunocytochemistry. Then, real-time PCR and western blotting assay were used for measuring absolute telomere length (TL) measurement, and gene and protein assessment of the cells, respectively. It was found that 2.5 µg/mL Ag-NPs caused elongation of the telomeres and altered VEGF, C-TnI, VWF, SMA, GATA-4, TERT, and cyclin D protein and gene expression in the cardiomyogenically differentiated BM-MSCs. Also, there was a significant increase in the protein and gene expression of Wnt3 and β-catenin as main components of pathways. We concluded that Ag-NPs could change the in vitro expression of cardiac markers of BM-MSCs via the Wnt3/β-catenin signaling pathway.

2020 ◽  
Vol 66 (3) ◽  
pp. 265-273
Author(s):  
O.V. Vysotskaya ◽  
A.I. Glukhov ◽  
Yu.P. Semochkina ◽  
S.A. Gordeev ◽  
E.Yu. Moskaleva

In proliferating normal and tumor cells, the telomere length (TL) is maintained by high telomerase activity (TA). In the absence of TA the TL maintenance involves a mechanism of alternative lengthening of telomeres (ALT). The aim of this study was to investigate the level of TA, the mTert expression and TL in cultured normal and transformed by γ- and γ,n-irradiation mesenchymal stem cells (MSCs) from mouse bone marrow, in sarcomas that developed after the transplantation of these cells into syngeneic mice, and in fibrosarcoma cell lines obtained from these tumors to find out the role of AT or ALT in maintaining TL in these cells. During prolonged cultivation of normal and transformed under the influence of γ- (1 Gy and 6 Gy) and γ,n-irradiation (0.05 Gy, 0.5 Gy, and 2 Gy) MSCs from mouse bone marrow, a decrease in TA was detected in irradiated cells. Even deeper decrease in TA was found in sarcomas developed after administration of transformed MSCs to syngeneic mice and in fibrosarcoma cell lines isolated from these tumors in which TA was either absent or was found to be at a very low level. TL in three of the four lines obtained was halved compared to the initial MSCs. With absent or low TA and reduced TL, the cells of all the obtained fibrosarcoma lines successfully proliferated without signs of a change in survival. The mechanism of telomere maintainance in fibrosarcoma cell lines in the absence of TA needs further investigation and it can be assumed that it is associated with the use of the ALT. The detected decrease or absence of TA in transformed under the action of irradiation MSCs with the preservation or even an increase in the telomerase gene expression may be associated with the formation of inactive splicing variants, and requires further study. The obtained lines of transformed MSCs and fibrosarcomas with TA and without the activity of this enzyme can be a useful model for studying the efficacy of TA and ALT inhibitors in vitro and in vivo.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Reza Najafi ◽  
Asadollah Asadi ◽  
Saber Zahri ◽  
Arash Abdolmaleki

Background: Tissue engineering may be used to repair, preserve, or improve tissues and organs. In this regard, acellular biological scaffolds are mainly used to reconstruct damaged tissues in regenerative medicine. Objectives: The present study examined the in vitro process of myocytes differentiated from bone marrow mesenchymal stem cells (BM‐MSCs) on the sheep bladder scaffold induced by 5-azacytidine. Methods: Decellularization was performed using a mixed method (physical and chemical) to prepare scaffolds kept at -20°C. The 5-azacytidine was used to induce BM‐MSCs to myocytes. Moreover, the muscle-specific gene expression (Desmin, α-Actinin, Myo D) was evaluated using the RT-PCR method. Results: It was revealed that BM‐MSCs on the scaffold had high proliferation and differentiation potentials. Desmin and α-Actinin gene expression marked the differentiation at the end of the fourth week. Moreover, the results of Masson’s trichrome staining at the end of the second, third and, fourth weeks also indicated that the first differentiation signs emerged at the end of the second week. Furthermore, differentiation reached its maximum level during the fourth week. Conclusions: According to the findings, combining physical and chemical methods was the best technique to prepare the bladder scaffold so that the bone marrow mesenchymal stem cells can be differentiated into myocytes on the bladder scaffold affected by 5-azacytidine (5 µmol), and As the induction time increases to day 28, myocyte cells become more developed.


Heliyon ◽  
2019 ◽  
Vol 5 (11) ◽  
pp. e02805
Author(s):  
Sirirat Nantavisai ◽  
Watchareewan Rodprasert ◽  
Koranis Pathanachai ◽  
Parattakorn Wikran ◽  
Podchana Kitcharoenthaworn ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hyeon-Jeong Lee ◽  
Hwan-Deuk Kim ◽  
Chan-Hee Jo ◽  
Eun-Yeong Bok ◽  
Saet-Byul Kim ◽  
...  

IFN-γ licensing to mesenchymal stem cells (MSCs) is applied to enhance the therapeutic potential of MSCs. However, although the features of MSCs are affected by several stimuli, little information is available on changes to the therapeutic potential of IFN-γ-licensed differentiated MSCs during xenogeneic applications. Therefore, the present study is aimed at clarifying the effects of adipogenic/osteogenic differentiation and IFN-γ licensing on the in vitro immunomodulatory and migratory properties of porcine bone marrow-derived MSCs in xenogeneic applications using human peripheral blood mononuclear cells (PBMCs). IFN-γ licensing in differentiated MSCs lowered lineage-specific gene expression but did not affect MSC-specific cell surface molecules. Although indoleamine 2,3 deoxygenase (IDO) activity and expression were increased after IFN-γ licensing in undifferentiated MSCs, they were reduced after differentiation. IFN-γ licensing to differentiated MSCs elevated the reduced IDO expression in differentiated MSCs; however, the increase was not sufficient to reach to the level achieved by undifferentiated MSCs. During a mixed lymphocyte reaction with quantification of TNF-α concentration, proliferation and activation of xenogeneic PBMCs were suppressed by undifferentiated MSCs but inhibited to a lesser extent by differentiated MSCs. IFN-γ licensing increasingly suppressed proliferation of PBMCs in undifferentiated MSCs but it was incapable of elevating the reduced immunosuppressive ability of differentiated MSCs. Migratory ability through a scratch assay and gene expression study was reduced in differentiated MSCs than their undifferentiated counterparts; IFN-γ licensing was unable to enhance the reduced migratory ability in differentiated MSCs. Similar results were found in a Transwell system with differentiated MSCs in the upper chamber toward xenogeneic PBMCs in the lower chamber, despite IFN-γ licensing increased the migratory ability of undifferentiated MSCs. Overall, IFN-γ licensing did not enhance the reduced immunomodulatory and migratory properties of differentiated MSCs in a xenogeneic application. This study provides a better understanding of the ways in which MSC therapy can be applied.


Heliyon ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. e02663 ◽  
Author(s):  
Sirirat Nantavisai ◽  
Watchareewan Rodprasert ◽  
Koranis Pathanachai ◽  
Parattakorn Wikran ◽  
Podchana Kitcharoenthaworn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document