scholarly journals Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

2014 ◽  
Vol 5 ◽  
pp. 26-35 ◽  
Author(s):  
Tian Tian ◽  
Burapol Singhana ◽  
Lauren E Englade-Franklin ◽  
Xianglin Zhai ◽  
T Randall Lee ◽  
...  

The solution self-assembly of multidentate organothiols onto Au(111) was studied in situ using scanning probe nanolithography and time-lapse atomic force microscopy (AFM). Self-assembled monolayers (SAMs) prepared from dilute solutions of multidentate thiols were found to assemble slowly, requiring more than six hours to generate films. A clean gold substrate was first imaged in ethanolic media using liquid AFM. Next, a 0.01 mM solution of multidentate thiol was injected into the liquid cell. As time progressed, molecular-level details of the surface changes at different time intervals were captured by successive AFM images. Scanning probe based nanofabrication was accomplished using protocols of nanografting and nanoshaving with n-alkanethiols and a tridentate molecule, 1,1,1-tris(mercaptomethyl)heptadecane (TMMH). Nanografted patterns of TMMH could be inscribed within n-alkanethiol SAMs; however, the molecular packing of the nanopatterns was less homogeneous compared to nanopatterns produced with monothiolates. The multidentate molecules have a more complex assembly pathway than monothiol counterparts, mediated by sequential steps of forming S–Au bonds to the substrate.

2017 ◽  
Vol 28 (45) ◽  
pp. 455603 ◽  
Author(s):  
Hitoshi Asakawa ◽  
Natsumi Inada ◽  
Kaito Hirata ◽  
Sayaka Matsui ◽  
Takumi Igarashi ◽  
...  

2005 ◽  
Vol 871 ◽  
Author(s):  
Imma Ratera ◽  
Jinyu Chen ◽  
Amanda Murphy ◽  
Frank Ogletree ◽  
Jean M. J. Fréchet ◽  
...  

AbstractThe oligothiophene derivative (4-(5″″-tetradecyl-[2,2′;5′,2″;5″,2″′;5″′,2″″] pentathiophen-5-yl)-butyric acid (C14-5TBA) was synthesized and the structural and mechanical properties of self-assembled monolayers on mica have been studied by atomic force microscopy (AFM). The films were prepared by drop casting a dilute THF solution (1mM) of the oligothiphene on mica. Islands containing primarily monolayers with a very small percentage of multilayers were formed. The molecules adsorb through the carboxylic group, and expose the alkyl chain (CH2)13CH3. High resolution AFM scans reveal a well ordered structure of molecules with unit cell dimensions of 0.65 and 0.46 nm. Applying load to the tip, the molecular film was gradually compressed from an initial height of 4.1nm to a final one of 2.6 nm, corresponding to atilt of the alkyl chains. In regions covered with bilayers the molecules in the second layer were oriented opposite to those in the first layer, thus exposing the carboxylic end group to the air. These second layer was easily removed as the tip pressure increased.


Langmuir ◽  
1999 ◽  
Vol 15 (17) ◽  
pp. 5541-5546 ◽  
Author(s):  
Holger Schönherr ◽  
G. Julius Vancso ◽  
Bart-Hendrik Huisman ◽  
Frank C. J. M. van Veggel ◽  
David N. Reinhoudt

1999 ◽  
Vol 14 (9) ◽  
pp. 3725-3733 ◽  
Author(s):  
A. Fischer ◽  
F. C. Jentoft ◽  
G. Weinberg ◽  
R. Schlögl ◽  
T. P. Niesen ◽  
...  

Oxidic zirconium films prepared by chemical deposition from aqueous medium on sulfonic acid terminated self-assembled monolayers attached to an oxidized silicon surface were investigated with scanning electron microscopy and atomic force microscopy. Bulk precipitate forms in the 4 mM Zr(SO4)2 · 4H2O, 0.4 N HCl deposition medium at 343 K after approximately 30 min. Precipitate particles (200 nm and larger) were found embedded in the oxidic zirconium film and adsorbed on top of the film; they could be washed off, but patches of the film were removed. Working with unstable deposition solutions, in which homogeneous nucleation occurs, leads to preparation-inherent flaws in the film.


Sign in / Sign up

Export Citation Format

Share Document