scholarly journals Phenalenyl-based mononuclear dysprosium complexes

2016 ◽  
Vol 7 ◽  
pp. 995-1009 ◽  
Author(s):  
Yanhua Lan ◽  
Andrea Magri ◽  
Olaf Fuhr ◽  
Mario Ruben

The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic 1H NMR, MALDI-TOF mass spectrometry, UV–vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics.

Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 51
Author(s):  
Lin Miao ◽  
Mei-Jiao Liu ◽  
Man-Man Ding ◽  
Yi-Quan Zhang ◽  
Hui-Zhong Kou

The complexes of lanthanide metals, especially dysprosium, can generally exhibit excellent magnetic properties. By means of modifying ligands, dual functions or even multi-functions can be achieved. Here, we synthesized an eight-coordinate Dy(III) complex 1, [Dy(HL-o)2(MeOH)2](ClO4)3·4.5MeOH, which is single-molecule magnet (SMM), and the introduction of the rhodamine 6G chromophore in the ring-opened ligand HL-o realizes ligand-centered fluorescence in addition to SMM. Magnetic measurements and ab initio calculations indicate that the magnetic relaxation for complex 1 should be due to the Raman relaxation process. Studies on magneto-structural correlationship of the rhodamine salicylaldehyde hydrazone Dy(III) complexes show that the calculated energy of the first Kramers Doublet (EKD1) is basically related to the Ophenoxy-Dy-Ophenoxy bond angle, i.e., the larger Ophenoxy-Dy-Ophenoxy bond angle corresponds to a larger EKD1.


2013 ◽  
Vol 68 (12) ◽  
pp. 1310-1320 ◽  
Author(s):  
Thomas M. Klapötke ◽  
Andreas Preimesser ◽  
Jörg Stierstorfer

Several 3,6-disubstituted 1,2,4,5-tetrazines were synthesized by nucleophilic substitution using 3,6-bis-(3,5-dimethyl-pyrazol-1-yl)-1,2,4,5-tetrazine and 3,6-dichloro-1,2,4,5-tetrazine as electrophiles. All new compounds were characterized by 1H NMR, 13C NMR and vibrational spectroscopy, mass spectrometry and elemental analysis (C,H,N). For analysis of the thermostability, differential scanning calorimetry (DSC) was used. Especially, the symmetrically bis-3,5-diamino-1,2,4- triazolyl-substituted derivative shows a very high thermal stability up to 370 °C. Therefore its energetic properties were determined and compared with thoses of hexanitrostilbene (HNS). The crystal structures of 3,6-bishydrazino-1,2,4,5-tetrazine, 3,6-dichloro-1,2,4,5-tetrazine and 3-amino-6-(3,5- diamino-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine dihydrate have been determined by low-temperature X-ray diffraction


2021 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Konstantin Martyanov ◽  
Jessica Flores Gonzalez ◽  
Sergey Norkov ◽  
Bertrand Lefeuvre ◽  
Vincent Dorcet ◽  
...  

The coordination reaction of the [Dy(hfac)3(H2O)2] units (hfac− = 1,1,1,5,5,5-hexafluoroacetylacetonate) with the two quinone-based derivatives 4,7-di-tert-butyl-2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzo[d][1,3]dithiole-5,6-dione (L1) and 7,8-dithiabicyclo[4.2.0]octa-1,5-diene-3,4-dione,2,5bis(1,1-dimethylethyl) (L2) led respectively to the complexes [Dy(hfac)3(H2O)(L1)] (1) and [Dy(hfac)3(H2O) (L2)]⋅(C6H14)(CH2Cl2) (2)⋅(C6H14)(CH2Cl2). X-ray structures on single crystal of 1 and 2⋅(C6H14)(CH2Cl2) revealed the coordination of the DyIII on the bischelating oxygenated quinone site and the formation of dimeric species through hydrogen bonds. Ac magnetic measurements highlighted field-induced single-molecule magnet behavior with magnetic relaxation through a Raman process.


2019 ◽  
Author(s):  
Yoji Horii ◽  
Marko Damjanović ◽  
M. R. Ajayakumar ◽  
Keiichi Katoh ◽  
Yasutaka Kitagawa ◽  
...  

<p>Herein we present a comprehensive study of the highly oxidized species of multiple-decker complexes composed of Tb(III) and Cd(II) ions and two to five phthalocyaninato ligands, which are stabilized by electron-donating <i>n</i>-butoxy chains. Paramagnetic <sup>1</sup>H NMR measurements for the series of triple, quadruple and quintuple-decker complexes revealed that ligand oxidations lead to a decrease in magnetic anisotropy, as predicted from <i>ab initio</i> calculations. Unusual paramagnetic shifts were observed in +2<i>e</i> charged quadruple and quintuple-decker complexes, indicating that those two species are actually triplet biradicals. The X-ray structural analysis for the series of oxidized multiple-decker complexes revealed that all the species show an axial compression induced by the ligand oxidations, resulting in the bowl-shaped distortion of the ligands, in agreement with predictions from DFT calculations. Magnetic measurements revealed that the series of complexes show single-molecule magnet (SMM) properties, which are controlled by the multi-step redox induced structural changes.</p>


2019 ◽  
Author(s):  
Yoji Horii ◽  
Marko Damjanović ◽  
M. R. Ajayakumar ◽  
Keiichi Katoh ◽  
Yasutaka Kitagawa ◽  
...  

<p>Herein we present a comprehensive study of the highly oxidized species of multiple-decker complexes composed of Tb(III) and Cd(II) ions and two to five phthalocyaninato ligands, which are stabilized by electron-donating <i>n</i>-butoxy chains. Paramagnetic <sup>1</sup>H NMR measurements for the series of triple, quadruple and quintuple-decker complexes revealed that ligand oxidations lead to a decrease in magnetic anisotropy, as predicted from <i>ab initio</i> calculations. Unusual paramagnetic shifts were observed in +2<i>e</i> charged quadruple and quintuple-decker complexes, indicating that those two species are actually triplet biradicals. The X-ray structural analysis for the series of oxidized multiple-decker complexes revealed that all the species show an axial compression induced by the ligand oxidations, resulting in the bowl-shaped distortion of the ligands, in agreement with predictions from DFT calculations. Magnetic measurements revealed that the series of complexes show single-molecule magnet (SMM) properties, which are controlled by the multi-step redox induced structural changes.</p>


2021 ◽  
Author(s):  
Hongdao Li ◽  
Pei Jing ◽  
Jiao Lu ◽  
Lu Xi ◽  
Qi Wang ◽  
...  

A family of 3d–4f heterometallic ring-shaped clusters on the basis of a nitrogen-rich nitronyl nitroxide radical have been obtained, and they feature polyfunctionality including magnetic properties, thermodynamics and luminescence behavior.


2005 ◽  
pp. 5038 ◽  
Author(s):  
Guillem Aromí ◽  
Simon Parsons ◽  
Wolfgang Wernsdorfer ◽  
Euan K. Brechin ◽  
Eric J. L. McInnes

2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Sign in / Sign up

Export Citation Format

Share Document