scholarly journals Complete σ* intramolecular aromatic hydroxylation mechanism through O2 activation by a Schiff base macrocyclic dicopper(I) complex

2013 ◽  
Vol 9 ◽  
pp. 585-593 ◽  
Author(s):  
Albert Poater ◽  
Miquel Solà

In this work we analyze the whole molecular mechanism for intramolecular aromatic hydroxylation through O2 activation by a Schiff hexaazamacrocyclic dicopper(I) complex, [CuI 2(bsH2m)]2+. Assisted by DFT calculations, we unravel the reaction pathway for the overall intramolecular aromatic hydroxylation, i.e., from the initial O2 reaction with the dicopper(I) species to first form a CuICuII-superoxo species, the subsequent reaction with the second CuI center to form a μ-η2:η2-peroxo-CuII 2 intermediate, the concerted peroxide O–O bond cleavage and C–O bond formation, followed finally by a proton transfer to an alpha aromatic carbon that immediately yields the product [CuII 2(bsH2m-O)(μ-OH)]2+.

2005 ◽  
Vol 70 (4) ◽  
pp. 430-440 ◽  
Author(s):  
Michael J. Carr ◽  
Michael G. S. Londesborough ◽  
Jonathan Bould ◽  
Ivana Císařová ◽  
Bohumil Štíbr ◽  
...  

The deprotonation of S2B17H17 with sodium hydride and subsequent reaction with [PtCl2(PMe2Ph)2] gives the new macropolyhedral metallathiaborane [(PMe2Ph)2PtS2B16H16], of which the cluster consists of a conventional eleven-vertex nido {SB10} unit, fused, with two boron atoms in common, with a {PtSB8} unit of unique ten-vertex neo-arachno constitution and geometry. The latter geometry suggests a configuration for the previously structurally uncharacterised [B10H15]- anion; starting from this configuration, DFT calculations of structure and thence of boron nuclear shieldings, which are found very closely to mimic those found experimentally, thence support a fluxional structure for [B10H15]- with three {BHB(bridging)} and two {BH(endo)} hydrogen atoms around a six-membered open face.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mainak Karmakar ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

The formation of an infinite 1D assembly is governed by the H-bonding interactions in the solid state structure of the two zinc complexes. It has been analyzed energetically using DFT calculations and several computational tools.


2020 ◽  
Vol 22 (9) ◽  
pp. 5057-5069 ◽  
Author(s):  
Jae-ung Lee ◽  
Yeonjoon Kim ◽  
Woo Youn Kim ◽  
Han Bin Oh

A new approach for elucidating gas-phase fragmentation mechanisms is proposed: graph theory-based reaction pathway searches (ACE-Reaction program) and density functional theory (DFT) calculations.


2003 ◽  
Vol 369 (1-2) ◽  
pp. 80-89 ◽  
Author(s):  
Marcin Ziółek ◽  
Jacek Kubicki ◽  
Andrzej Maciejewski ◽  
Ryszard Naskrȩcki ◽  
Anna Grabowska

2017 ◽  
Vol 12 (19) ◽  
pp. 2554-2557 ◽  
Author(s):  
Dong-Yu Wang ◽  
Koki Morimoto ◽  
Ze-Kun Yang ◽  
Chao Wang ◽  
Masanobu Uchiyama

Sign in / Sign up

Export Citation Format

Share Document