acidity constants
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 22)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 21 (5) ◽  
pp. 1271
Author(s):  
Nguyen Quoc Thang ◽  
Tran Nguyen Minh An ◽  
Le Thi Thanh Tran ◽  
Do Tam Nhan ◽  
Mai Ngoc Tan ◽  
...  

In this study, the complex of difluoroboron, curcumin (BF2-Cur), has been synthesized and characterized via the combination of Boron trifluoride-diethyl etherate ((C2H5)2OBF3) and curcumin. However, the new dissociation constants, pKa1 and pKa2 of the BF2-Cur complex, have been indicted by the values of 8.44 ± 0.16 and 9.76 ± 0.13, respectively. On the other hand, the reagent was also used to determine As(III) in aqueous solutions by UV–Vis spectrophotometry. As a result, the method was validated for accuracy, precision, linearity, and sensitivity, and the linear range was from 1.0 to 25.0 µmol/L, with the linear regression, A = 0.0027 C + 0.0106, correlation coefficient R2 = 0.9969. Besides, the limit of detection (LOD) and limit of quantification (LOQ) were determined as 0.83 and 2.10 µmol/L, respectively. Thus, the developed method is successfully used for quantitative analysis of total arsenic in wastewater by reducing As(V) to As(III), then determining As(III) with high accuracy results.


Author(s):  
Nicolas Tielker ◽  
Stefan Güssregen ◽  
Stefan M. Kast

AbstractInspired by the successful application of the embedded cluster reference interaction site model (EC-RISM), a combination of quantum–mechanical calculations with three-dimensional RISM theory to predict Gibbs energies of species in solution within the SAMPL6.1 (acidity constants, pKa) and SAMPL6.2 (octanol–water partition coefficients, log P) the methodology was applied to the recent SAMPL7 physical property challenge on aqueous pKa and octanol–water log P values. Not part of the challenge but provided by the organizers, we also computed distribution coefficients log D7.4 from predicted pKa and log P data. While macroscopic pKa predictions compared very favorably with experimental data (root mean square error, RMSE 0.72 pK units), the performance of the log P model (RMSE 1.84) fell behind expectations from the SAMPL6.2 challenge, leading to reasonable log D7.4 predictions (RMSE 1.69) from combining the independent calculations. In the post-submission phase, conformations generated by different methodology yielded results that did not significantly improve the original predictions. While overall satisfactory compared to previous log D challenges, the predicted data suggest that further effort is needed for optimizing the robustness of the partition coefficient model within EC-RISM calculations and for shaping the agreement between experimental conditions and the corresponding model description.


Author(s):  
Antonio Viayna ◽  
Silvana Pinheiro ◽  
Carles Curutchet ◽  
F. Javier Luque ◽  
William J. Zamora

AbstractWithin the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses and improve the performance of the method.


Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 454-508
Author(s):  
Harald Kalka

For an N-protic acid–base system, the set of nonlinear equations (i.e., mass action and balance laws) provides a simple analytical solution/formula for any integer N ≥ 1. The approach is applicable for the general case of zwitterionic acids HNA+Z (e.g., amino acids, NTA, and EDTA), which includes (i) the “ordinary acids” as a special case (Z = 0) and (ii) surface complexation. Examples are presented for N = 1 to 6. The high-N perspective allows classification of equivalence points (including isoionic and isoelectric points). Principally, there are two main approaches to N-protic acids: one from hydrochemistry and one “outside inorganic hydrochemistry”. They differ in many ways: the choice of the reference state (either HNA or A−N), the reaction type (dissociation or association), the type/nature of the acidity constants, and the structure of the formulas. Once the (nonlinear) conversion between the two approaches is established, we obtain a systematics of acidity constants (macroscopic, microscopic, cumulative, and Simms). Finally, from the viewpoint of statistical mechanics (canonical isothermal–isobaric ensemble), buffer capacities, buffer intensities, and higher pH derivatives are actually fluctuations in the form of variance, skewness, and kurtosis.


2020 ◽  
Vol 8 (9) ◽  
pp. 1337 ◽  
Author(s):  
Dorcas Zúñiga-Silgado ◽  
Julio C. Rivera-Leyva ◽  
Jeffrey J. Coleman ◽  
Ayixon Sánchez-Reyez ◽  
Susana Valencia-Díaz ◽  
...  

Phosphorus (P) is considered a scarce macronutrient for plants in most tropical soils. The application of rock phosphate (RP) has been used to fertilize crops, but the amount of P released is not always at a necessary level for the plant. An alternative to this problem is the use of Phosphorus Solubilizing Microorganisms (PSM) to release P from chemically unavailable forms. This study compared the P sorption capacity of soils (the ability to retain P, making it unavailable for the plant) and the profile of organic acids (OA) produced by fungal isolates and the in vitro solubilization efficiency of RP. Trichoderma and Aspergillus strains were assessed in media with or without RP and different soils (Andisol, Alfisol, Vertisol). The type and amount of OA and the amount of soluble P were quantified, and according to our data, under the conditions tested, significant differences were observed in the OA profiles and the amount of soluble P present in the different soils. The efficiency to solubilize RP lies in the release of OAs with low acidity constants independent of the concentration at which they are released. It is proposed that the main mechanism of RP dissolution is the production of OAs.


Sign in / Sign up

Export Citation Format

Share Document