Evaluation of Nonlinear Frequency Compression for School-Age Children with Moderate to Moderately Severe Hearing Loss

2010 ◽  
Vol 21 (10) ◽  
pp. 618-628 ◽  
Author(s):  
Jace Wolfe ◽  
Andrew John ◽  
Erin Schafer ◽  
Myriel Nyffeler ◽  
Michael Boretzki ◽  
...  

Background: Previous research has indicated that children with moderate hearing loss experience difficulty with recognition of high-frequency speech sounds, such as fricatives and affricates. Conventional behind-the-ear (BTE) amplification typically does not provide ample output in the high frequencies (4000 Hz and beyond) to ensure optimal audibility for these sounds. Purpose: To evaluate nonlinear frequency compression (NLFC) as a means to improve speech recognition for children with moderate to moderately severe hearing loss. Research Design: Within subject, crossover design with repeated measures across test conditions. Study Sample: Fifteen children, aged 5–13 yr, with moderate to moderately severe high-frequency sensorineural hearing loss were fitted with Phonak Nios, microsized, BTE hearing aids. These children were previous users of digital hearing aids and communicated via spoken language. Their speech and language abilities were age-appropriate. Data Collection and Analysis: Aided thresholds and speech recognition in quiet and in noise were assessed after 6 wk of use with NLFC and 6 wk of use without NLFC. Participants were randomly assigned to counter-balanced groups so that eight participants began the first 6 wk trial with NLFC enabled and the other seven participants started with NLFC disabled. Then, the provision of NLFC was switched for the second 6 wk trial. Speech recognition in quiet was assessed via word recognition assessments with the University of Western Ontario (UWO) Plural Test and recognition of vowel-consonant-vowel nonsense syllables with the Phonak Logatome test. Speech recognition in noise was assessed by evaluating the signal-to-noise ratio in dB for 50% correct performance on the Bamford-Kowal-Bench Speech-in-Noise (BKB-SIN) test, an adaptive test of speech perception in a multitalker babble background. Results: Aided thresholds for high-frequency stimuli were significantly better when NLFC was enabled, and use of NLFC resulted in significantly better speech recognition in quiet for the UWO Plural Test and for the phonemes /d/ and /s/ on the Phonak Logatome test. There was not a statistically significant difference in performance on the BKB-SIN test between the NLFC enabled and disabled conditions. Conclusions: These results indicate that NLFC improves audibility for and recognition of high-frequency speech sounds for children with moderate to moderately severe hearing loss in quiet listening situations.

Author(s):  
Ebru Kösemihal ◽  
Ferda Akdas

Abstract Purpose The study is concern with the distinguishing of the stimuli containing high frequency information with the frequency compression feature at the cortical level using the acoustic change complex (ACC) and the comparison of such with the ACC answers of individuals with normal hearing. Research Design This is a case–control study. Study Sample Thirty adults (21 males and nine females) with normal hearing, ranging in age between 16 and 63 years (mean: 36.7 ± 12.9 years) and 20 adults (16 males and four females) with hearing loss ranging in age between 16 and 70 years (mean:49.0 ± 19.8 years) have been included in this study. Data Collection and Analysis A total of 1,000 ms long stimulus containing 500 and 4,000 Hz tonal stimuli was used for ACC recording. The start frequency (SF) and compression ratio (CR) parameters of the hearing aids were programmed according to the default settings (SFd, CRd) in the device software, the optimal setting (SFo, CRo), and the extra compression (SFe, CRe) requirements and ACC has been recorded for each condition. Evaluation has been performed according to P1-N1-P2 wave complex and ACC complex wave latencies. Independent samples t-test was used to test the significance of the differences between the groups. Results In all individuals ACC has been observed. There was a significant difference between the wave latencies in normal hearing- and hearing-impaired groups. All wave latency averages of the individuals with hearing impairment were longer than the individuals with normal hearing. There were statistically significant differences between SFd-SFo, SFd-SFe, and SFo-SFe parameters. But there was no difference between CRd, CRo, and CRe in terms of CRs. Conclusion In order to discriminate high frequency information at the cortical level we should not rely on default settings of the SF and CR of the hearing aids. Optimal bandwidth must be adjusted without performing insufficient compression or over-compression. ACC can be used besides the real ear measurement for hearing aid fitting.


2014 ◽  
Vol 25 (10) ◽  
pp. 1022-1033 ◽  
Author(s):  
Andrew John ◽  
Jace Wolfe ◽  
Susan Scollie ◽  
Erin Schafer ◽  
Mary Hudson ◽  
...  

Background: Previous research has suggested that use of nonlinear frequency compression (NLFC) can improve audibility for high-frequency sounds and speech recognition of children with moderate to profound high-frequency hearing loss. Furthermore, previous studies have generally found no detriment associated with the use of NLFC. However, there have been no published studies examining the effect of NLFC on the performance of children with cookie-bite audiometric configurations. For this configuration of hearing loss, frequency-lowering processing will likely move high-frequency sounds to a lower frequency range at which a greater degree of hearing loss exists. Purpose: The purpose of this study was to evaluate and compare the effects of wideband amplification and NLFC on high-frequency audibility and speech recognition of children with cookie-bite audiometric configurations. Research Design: This study consisted of a within-participant design with repeated measures across test conditions. Study Sample: Seven children, ages 6–13 yr, with cookie-bite audiometric configurations and normal hearing or mild hearing loss at 6000 and 8000 Hz, were recruited. Intervention: Participants were fitted with Phonak Nios S H2O III behind-the-ear hearing aids and Oticon Safari 300 behind-the-ear hearing aids. Data Collection: The participants were evaluated after three 4-to 6-wk intervals: (1) Phonak Nios S H2O III without NLFC, (2) Phonak Nios S H2O III with NLFC, and (3) Oticon Safari 300 with wideband frequency response extending to 8000 Hz. The order in which each technology was used was counterbalanced across participants. High-frequency audibility was evaluated by assessing aided thresholds (dB SPL) for warble tones and the high-frequency phonemes /sh/ and /s/. Speech recognition in quiet was measured with the University of Western Ontario (UWO) Plurals Test, the UWO Distinctive Features Difference (DFD) Test, and the Phoneme Perception Test vowel-consonant-vowel nonsense syllable test. Sentence recognition in noise was evaluated with the Bamford-Kowal-Bench Speech-In-Noise (BKB-SIN) Test. Analysis: Repeated-measures analyses of variance were used to analyze the data collected in this study. The results across the three different conditions were compared. Results: No difference in performance across conditions was observed for detection of high-frequency warble tones and the speech sounds /sh/ and /s/. No significant difference was seen across conditions for speech recognition in quiet when measured with the UWO Plurals Test, the UWO-DFD Test, and the Phoneme Perception Test vowel-consonant-vowel nonsense syllable test. Finally, there were also no differences across conditions on the BKB-SIN Test. Conclusions: These results suggest that NLFC does not degrade or improve audibility for and recognition of high-frequency speech sounds as well as sentence recognition in noise when compared with wideband amplification for children with cookie-bite audiometric configurations.


2020 ◽  
Vol 31 (08) ◽  
pp. 590-598
Author(s):  
Li Xu ◽  
Solveig C. Voss ◽  
Jing Yang ◽  
Xianhui Wang ◽  
Qian Lu ◽  
...  

Abstract Background Mandarin Chinese has a rich repertoire of high-frequency speech sounds. This may pose a remarkable challenge to hearing-impaired listeners who speak Mandarin Chinese because of their high-frequency sloping hearing loss. An adaptive nonlinear frequency compression (adaptive NLFC) algorithm has been implemented in contemporary hearing aids to alleviate the problem. Purpose The present study examined the performance of speech perception and sound-quality rating in Mandarin-speaking hearing-impaired listeners using hearing aids fitted with adaptive NLFC (i.e., SoundRecover2 or SR2) at different parameter settings. Research Design Hearing-impaired listeners' phoneme detection thresholds, speech reception thresholds, and sound-quality ratings were collected with various SR2 settings. Study Sample The participants included 15 Mandarin-speaking adults aged 32 to 84 years old who had symmetric sloping severe-to-profound sensorineural hearing loss. Intervention The participants were fitted bilaterally with Phonak Naida V90-SP hearing aids. Data Collection and Analysis The outcome measures included phoneme detection threshold using the Mandarin Phonak Phoneme Perception test, speech reception threshold using the Mandarin hearing in noise test (M-HINT), and sound-quality ratings on human speech in quiet and noise, bird chirps, and music in quiet. For each test, five experimental settings were applied and compared: SR2-off, SR2-weak, SR2-default, SR2-strong 1, and SR2-strong 2. Results The results showed that listeners performed significantly better with SR2-strong 1 and SR2-strong 2 settings than with SR2-off or SR2-weak settings for speech reception threshold and phoneme detection threshold. However, no significant improvement was observed in sound-quality ratings among different settings. Conclusions These preliminary findings suggested that the adaptive NLFC algorithm provides perceptual benefit to Mandarin-speaking people with severe-to-profound hearing loss.


2014 ◽  
Vol 35 (4) ◽  
pp. 440-447 ◽  
Author(s):  
Ryan W. McCreery ◽  
Joshua Alexander ◽  
Marc A. Brennan ◽  
Brenda Hoover ◽  
Judy Kopun ◽  
...  

2005 ◽  
Vol 125 (7) ◽  
pp. 693-696 ◽  
Author(s):  
Maurizio Barbara ◽  
Giorgio Bandiera ◽  
Bruno Serra ◽  
Vania Marrone ◽  
Silvia Tarentini ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 233121651882220 ◽  
Author(s):  
Marina Salorio-Corbetto ◽  
Thomas Baer ◽  
Brian C. J. Moore

The objective was to determine the effects of two frequency-lowering algorithms (frequency transposition, FT, and frequency compression, FC) on audibility, speech identification, and subjective benefit, for people with high-frequency hearing loss and extensive dead regions (DRs) in the cochlea. A single-blind randomized crossover design was used. FT and FC were compared with each other and with a control condition (denoted ‘Control’) without frequency lowering, using hearing aids that were otherwise identical. Data were collected after at least 6 weeks of experience with a condition. Outcome measures were audibility, scores for consonant identification, scores for word-final /s, z/ detection ( S test), sentence-in-noise intelligibility, and a questionnaire assessing self-perceived benefit (Spatial and Qualities of Hearing Scale). Ten adults with steeply sloping high-frequency hearing loss and extensive DRs were tested. FT and FC improved the audibility of some high-frequency sounds for 7 and 9 participants out of 10, respectively. At the group level, performance for FT and FC did not differ significantly from that for Control for any of the outcome measures. However, the pattern of consonant confusions varied across conditions. Bayesian analysis of the confusion matrices revealed a trend for FT to lead to more consistent error patterns than FC and Control. Thus, FT may have the potential to give greater benefit than Control or FC following extended experience or training.


2017 ◽  
Vol 28 (09) ◽  
pp. 823-837 ◽  
Author(s):  
Marc A. Brennan ◽  
Dawna Lewis ◽  
Ryan McCreery ◽  
Judy Kopun ◽  
Joshua M. Alexander

AbstractNonlinear frequency compression (NFC) can improve the audibility of high-frequency sounds by lowering them to a frequency where audibility is better; however, this lowering results in spectral distortion. Consequently, performance is a combination of the effects of increased access to high-frequency sounds and the detrimental effects of spectral distortion. Previous work has demonstrated positive benefits of NFC on speech recognition when NFC is set to improve audibility while minimizing distortion. However, the extent to which NFC impacts listening effort is not well understood, especially for children with sensorineural hearing loss (SNHL).To examine the impact of NFC on recognition and listening effort for speech in adults and children with SNHL.Within-subject, quasi-experimental study. Participants listened to amplified nonsense words that were (1) frequency-lowered using NFC, (2) low-pass filtered at 5 kHz to simulate the restricted bandwidth (RBW) of conventional hearing aid processing, or (3) low-pass filtered at 10 kHz to simulate extended bandwidth (EBW) amplification.Fourteen children (8–16 yr) and 14 adults (19–65 yr) with mild-to-severe SNHL.Participants listened to speech processed by a hearing aid simulator that amplified input signals to fit a prescriptive target fitting procedure.Participants were blinded to the type of processing. Participants' responses to each nonsense word were analyzed for accuracy and verbal-response time (VRT; listening effort). A multivariate analysis of variance and linear mixed model were used to determine the effect of hearing-aid signal processing on nonsense word recognition and VRT.Both children and adults identified the nonsense words and initial consonants better with EBW and NFC than with RBW. The type of processing did not affect the identification of the vowels or final consonants. There was no effect of age on recognition of the nonsense words, initial consonants, medial vowels, or final consonants. VRT did not change significantly with the type of processing or age.Both adults and children demonstrated improved speech recognition with access to the high-frequency sounds in speech. Listening effort as measured by VRT was not affected by access to high-frequency sounds.


CoDAS ◽  
2015 ◽  
Vol 27 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Vanessa Clarizia Marchesin ◽  
Maria Cecília Martinelli Iório

PURPOSE: To verify the effect of long-term use of hearing aids with frequency compression for verbal behavior tests and daily activities. METHODS: Thirty-two adults, aged between 30 and 60 years old, with moderate to severe sensorineural hearing loss at high frequencies with steeply sloping configuration were divided into two groups: 16 with hearing aids with frequency compression algorithm enabled and 16 not enabled. All participants underwent the detection tests of consonant sounds, monosyllable recognition in quiet environments, identification of fricative monosyllables, and Abbreviated Profile of Hearing Aid Benefit (APHAB) questionnaire in five times throughout a 12-month trial. RESULTS: Detection of consonant sounds, recognition of monosyllables in quiet environments and identification of fricative monosyllables improved significantly with frequency compression enabled. Participants had their APHAB scores improved whether they were adapted to the frequency compression or not. CONCLUSION: Frequency compression provides the anticipated improvement in audibility, detection of high-frequency consonant sounds, and recognition of monosyllables.


Sign in / Sign up

Export Citation Format

Share Document